Content deleted Content added
fixup |
Citation bot (talk | contribs) Add: s2cid, authors 1-1. Removed parameters. Some additions/deletions were parameter name changes. | Use this bot. Report bugs. | Suggested by Whoop whoop pull up | #UCB_webform 2/64 |
||
Line 36:
In this article, we discuss certain applications of the [[dual quaternion]] algebra to 2D geometry. At this present time, the article is focused on a 4-dimensional subalgebra of the dual quaternions which we will call the ''planar quaternions''.
The '''planar quaternions''' make up a four-dimensional [[Algebra over a field|algebra]] over the [[real number]]s.<ref>{{Citation |
Unlike multiplication of [[dual number]]s or of [[complex number]]s, that of planar quaternions is [[non-commutative]].
Line 88:
* As a way to represent [[Dual quaternion|rigid body motions in 3D space]]. The planar quaternions can then be seen to represent a subset of those rigid-body motions. This requires some familiarity with the way the dual quaternions act on Euclidean space. We will not describe this approach here as it is [[Dual quaternion|adequately done elsewhere]].
* The dual quaternions can be understood as an "infinitesimal thickening" of the quaternions.<ref>{{Cite web| url=https://terrytao.wordpress.com/2011/03/05/lines-in-the-euclidean-group-se2/|title=Lines in the Euclidean group SE(2)| date=2011-03-06|website=What's new|access-date=2019-05-28}}</ref><ref>{{Cite journal|last=Study|first=E.|date=December 1891| title=Von den Bewegungen und Umlegungen|journal=Mathematische Annalen|volume=39|issue=4|pages=441–565| doi=10.1007/bf01199824|s2cid=115457030 | issn=0025-5831}}</ref><ref>{{Cite journal|last=Sauer|first=R.|date=1939|title=Dr. Wilhelm Blaschke, Prof. a. d. Universität Hamburg, Ebene Kinematik, eine Vorlesung (Hamburger Math. Einzelschriften, 25. Heft, 1938). 56 S. m. 19 Abb. Leipzig-Berlin 1938, Verlag B. G. Teubner. Preis br. 4 M.|journal=ZAMM - Zeitschrift für Angewandte Mathematik und Mechanik|volume=19|issue=2| pages=127| doi=10.1002/zamm.19390190222|issn=0044-2267|bibcode=1939ZaMM...19R.127S}}</ref> Recall that the quaternions can be used to represent [[Quaternions and spatial rotation|3D spatial rotations]], while the dual numbers can be used to represent "[[infinitesimals]]". Combining those features together allows for rotations to be varied infinitesimally. Let <math>\Pi</math> denote an infinitesimal plane lying on the unit sphere, equal to <math>\{i + x \varepsilon j + y \varepsilon k \mid x \in \mathbb R, y \in \mathbb R\}</math>. Observe that <math>\Pi</math> is a subset of the sphere, in spite of being flat (this is thanks to the behaviour of dual number infinitesimals). {{pb}} Observe then that as a subset of the dual quaternions, the planar quaternions rotate the plane <math>\Pi</math> back onto itself. The effect this has on <math>v \in \Pi</math> depends on the value of <math>q = A + Bi + C\varepsilon j + D\varepsilon k</math> in <math>qvq^{-1}</math>:
*# When <math>B\neq 0</math>, the axis of rotation points towards some point <math>p</math> on <math>\Pi</math>, so that the points on <math>\Pi</math> experience a rotation around <math>p</math>.
*# When <math>B = 0</math>, the axis of rotation points away from the plane, with the angle of rotation being infinitesimal. In this case, the points on <math>\Pi</math> experience a translation.
|