Content deleted Content added
Tags: Mobile edit Mobile web edit Advanced mobile edit |
|||
Line 9:
:<math>\pi_0(x) = \sum_n\frac{1}{n}\,\mu(n)\,f(x^{1/n}) = f(x) - \frac{1}{2}\,f(x^{1/2}) - \frac{1}{3}\,f(x^{1/3}) - \frac{1}{5}\,f(x^{1/5}) + \frac{1}{6}\,f(x^{1/6}) - \cdots,</math>
where {{math|''μ''(''n'')}} is the [[Möbius function]]. Riemann's formula is then
:<math>f(x) = \operatorname{li}(x) - \sum_\rho \operatorname{li}(x^\rho) - \log(2) + \int_x^\infty \frac{
involving a sum over the non-trivial zeros {{mvar|ρ}} of the Riemann zeta function. The sum is not [[Absolute convergence|absolutely convergent]], but may be evaluated by taking the zeros in order of the absolute value of their imaginary part. The function {{math|li}} occurring in the first term is the (unoffset) [[logarithmic integral function]] given by the [[Cauchy principal value]] of the divergent integral
:<math>\operatorname{li}(x) = \int_0^x \frac{
The terms {{math|li(''x''<sup>''ρ''</sup>)}} involving the zeros of the zeta function need some care in their definition as {{math|li}} has [[branch point]]s at 0 and 1, and are defined by [[analytic continuation]] in the complex variable {{mvar|ρ}} in the region {{math|''x''
The first rigorous proof of the aforementioned formula was given by von Mangoldt in 1895: it started with a proof of the following formula for the [[Chebyshev's function]] {{mvar|ψ}} <ref>Weisstein, Eric W. [http://mathworld.wolfram.com/ExplicitFormula.html Explicit Formula] on MathWorld.</ref>
:<math>\psi_0(x) = \dfrac{1}{2\pi i} \int_{\sigma-i \infty}^{\sigma+i \infty}\left(-\dfrac{\zeta'(s)}{\zeta(s)}\right)\dfrac{x^s}{s}\
where the LHS is an inverse Mellin transform with
:<math>\quad\sigma > 1\,, \quad \psi(x) = \sum_{p^k \le x} \log p\,,
Line 23:
This series is also conditionally convergent and the sum over zeroes should again be taken in increasing order of imaginary part:<ref name=Ing77>Ingham (1990) p.77</ref>
:<math>\sum_\rho\frac{x^\rho}{\rho} = \lim_{T \rightarrow \infty} S(x,T) \quad</math> where <math>\quad S(x,T) = \sum_{\rho:|\Im \rho| \le T} \frac{x^\rho}{\rho}\,.</math>
The error involved in truncating the sum to {{math|''S''(''x'',''T'')}} is always smaller than {{math|ln(''x'')}} in absolute value, and when divided by the [[natural logarithm]] of {{mvar|x}}, has absolute value smaller than {{math|{{frac|''x''|''T''}}}} divided by the distance from {{mvar|x}} to the nearest prime power.<ref>[https://math.stackexchange.com/q/497949 Confused about the explicit formula for ψ0(x)]</ref>
|