Divisor function: Difference between revisions

Content deleted Content added
Series relations: Clarification
Line 266:
:<math>\sum_{n=1}^\infty \frac{\sigma_{a}(n)}{n^s} = \zeta(s) \zeta(s-a)\quad\text{for}\quad s>1,s>a+1,</math>
 
whichwhere <math>\zeta</math> is the [[Riemann zeta function]]. The series for ''d''(''n'')&nbsp;=&nbsp;''&sigma;''<sub>0</sub>(''n'') gives: {{sfnp|Hardy|Wright|2008|pp=326-328|loc=§17.5}}
 
: <math>\sum_{n=1}^\infty \frac{d(n)}{n^s} = \zeta^2(s)\quad\text{for}\quad s>1,</math>