Differentiable programming: Difference between revisions

Content deleted Content added
mNo edit summary
Applications: Localized references
Line 15:
 
==Applications==
Differentiable programming has been applied in areas such as combining [[deep learning]] with [[physics engines]] in [[robotics]], solving electronic structure problems with differentiable [[density functional theory]], differentiable [[Ray tracing (graphics)|ray tracing]], [[image processing]], and [[probabilistic programming]].<ref>{{cite arXiv |last1eprint=Degrave1611.01652 |class=cs.NE |first1=Jonas |last2last1=HermansDegrave |first2=Michiel |last3last2=Dambre|first3=Joni|last4=wyffels|first4=Francis|date=2016-11-05Hermans |title=A Differentiable Physics Engine for Deep Learning in Robotics |eprintdate=1611.016522016-11-05 |classlast3=cs.NEDambre |first3=Joni |last4=wyffels |first4=Francis}}</ref> solving electronic structure problems with differentiable [[density functional theory]],<ref name='"Li2021'">{{cite journal |titlelast1=Kohn-Sham Equations as Regularizer: Building Prior Knowledge into Machine-Learned Physics |journal=Physical Review Letters |year=2021Li |first1=Li |last1last2=LiHoyer | first2=Stephan | last2last3=HoyerPederson | first3=Ryan | last3last4=PedersonSun | first4=Ruoxi | last4last5=SunCubuk | first5=Ekin D. | last5last6=CubukRiley | first6=Patrick | last6last7=RileyBurke |first7=Kieron |year=2021 last7|title=BurkeKohn-Sham Equations as Regularizer: Building Prior Knowledge into Machine-Learned Physics |journal=Physical Review Letters |volume=126 |issue=3 |pages=036401 |arxiv=2009.08551 |bibcode=2021PhRvL.126c6401L |doi=10.1103/PhysRevLett.126.036401 |pmid=33543980 |arxiv=2009.08551 |bibcode=2021PhRvL.126c6401L |doi-access=free}}</ref> differentiable [[Ray tracing (graphics)|ray tracing]],<ref>{{Cite web|url=https://people.csail.mit.edu/tzumao/diffrt/ |title=Differentiable Monte Carlo Ray Tracing through Edge Sampling |websiteurl=https://people.csail.mit.edu/tzumao/diffrt/ |access-date=2019-02-13}}</ref><ref>{{Cite web|url=https://sciml.ai/roadmap/|title=SciML Scientific Machine Learning Open Source Software Organization Roadmap|website=scimlpeople.ai|access-date=2020-07-19csail.mit.edu}}</ref> [[image processing]],<ref>{{Cite web|url=https://people.csail.mit.edu/tzumao/gradient_halide/ |title=Differentiable Programming for Image Processing and Deep Learning in Halide |websiteurl=https://people.csail.mit.edu/tzumao/gradient_halide/ |access-date=2019-02-13 |website=people.csail.mit.edu}}</ref> and [[probabilistic programming]].<ref name="diffprog-zygote"/>
 
==See also==