Counting quantification: Difference between revisions

Content deleted Content added
Definition in terms of ordinary quantifiers
Line 8:
Counting quantifiers can be defined [[recursive definition|recursively]] in terms of ordinary quantifiers.
 
Let <math>\exists_exists^{= k}</math> denote "there exist exactly <math>k</math>". Then
:<math>\begin{align}
\exists^{= 0} x F(x) &\leftrightarrow \neg \exists x F(x) \\
\exists^{= k+1} x F(x) &\leftrightarrow \exists x (F(x) \land \exists^{= k} y (y \neq x \land F(y)))
\end{align}</math>
Let <math>\exists_exists^{\geq k}</math> denote "there exist at least <math>k</math>". Then
:<math>\begin{align}
\exists^{\geq 0} x F(x) &\leftrightarrow \top \\