Triad method: Difference between revisions

Content deleted Content added
Static75 (talk | contribs)
m Changed text for clarification and easier understanding.
No edit summary
Line 1:
{{short description|Solution to the spacecraft attitude determination problem}}{{Tone|date=June 2022}}
 
The '''Triad method''' is one of the earliest{{when|date=August 2022}} and simplest solutions to the spacecraft attitude determination problem.<ref>{{cite journal|last=Black|first=Harold|title=A Passive System for Determining the Attitude of a Satellite|journal=AIAA Journal|date=July 1964|volume=2|issue=7|pages=1350–1351|doi=10.2514/3.2555|bibcode = 1964AIAAJ...2.1350. }}</ref><ref>{{cite journal|last=Black|first=Harold|title=Early Developments of Transit, the Navy Navigation Satellite System|journal=Journal of Guidance, Control and Dynamics|date=July–August 1990|volume=13|issue=4|pages=577–585|doi=10.2514/3.25373|bibcode = 1990JGCD...13..577B }}</ref> Given the knowledge of two vectors in the reference and body coordinates of a satellite, the TrianTriad algorithm obtains the direction cosine matrix relating to both frames. Harold Black played a key role in the development of the guidance, navigation, and control of the U.S. Navy's Transit satellite system at Johns Hopkins Applied Physics Laboratories. Triad represented the state of practice in spacecraft attitude determination before the advent of [[Wahba's problem]]<ref>{{cite journal|last=Wahba|first=Grace|title=A Least Squares Estimate of Satellite Attitude, Problem 65.1|journal=SIAM Review|date=July 1966|pages=385–386|doi=10.1137/1008080|volume=8}}</ref> and its several optimal solutions. Covariance analysis for Black's solution was subsequently provided by Markley.<ref>{{cite journal|last=Markley|first=Landis|title=Attitude Determination Using Vector Observations: A Fast Optimal Matrix Algorithm|journal=The Journal of Astronautical Sciences|date=April–June 1993|volume=41|issue=2|pages=261–280|url=http://www.malcolmdshuster.com/FC_Markley_1993_J_FOAM_JAS_MDSscan.pdf|accessdate=April 18, 2012}}</ref>
 
==Summary==