Single-electron transistor: Difference between revisions

Content deleted Content added
Tjlafave (talk | contribs)
mNo edit summary
Tjlafave (talk | contribs)
History: simplified sentence structure
Line 9:
<!-- What was the first version made of? -->
<!-- What kinds of SETs have been made? -->
WhenA [[Davidnew Thouless]]subfield pointedof outcondensed matter physics began in 1977 thatwhen the[[David sizeThouless]] ofpointed aout conductorthat, ifwhen made small enough, will affect the electronic propertiessize of thea conductor, aaffects newits subfieldelectronic of condensed matter physics was startedproperties.<ref>{{cite journal |last1=Thouless |first1=David J. |author-link=David J. Thouless| title=Maximum Metallic Resistance in Thin Wires |journal=Phys. Rev. Lett. |volume=39 |issue=18 |pages=1167–1169 |year=1977 |doi=10.1103/PhysRevLett.39.1167|bibcode=1977PhRvL..39.1167T }}</ref> TheThis research thatwas followed duringby themesoscopic 1980sphysics wasresearch known asin the [[mesoscopic physics]],1980s based on the submicron-size of systems investigated.<ref>{{cite journal|last1=Al'Tshuler|first1=Boris L.|last2=Lee|first2=Patrick A.|title=Disordered electronic systems|journal=Physics Today|volume=41|issue=12|year=1988|pages=36–44|doi=10.1063/1.881139|bibcode=1988PhT....41l..36A}}</ref> ThisThus was the starting point of thebegan research related to the single-electron transistor.
 
The first single-electron transistor based on the Coulomb blockade was reported in 1986 by Soviet scientists {{ill|K. K. Likharev|ru|Лихарев, Константин Константинович}} and D. V. Averin.<ref name=":1">{{Cite journal|last1=Averin|first1=D. V.|last2=Likharev|first2=K. K.|date=1986-02-01|title=Coulomb blockade of single-electron tunnelling, and coherent oscillations in small tunnel junctions|journal=Journal of Low Temperature Physics|language=en|volume=62|issue=3–4|pages=345–373|doi=10.1007/BF00683469|issn=0022-2291|bibcode=1986JLTP...62..345A|s2cid=120841063}}</ref> A couple of years later, T. Fulton and G. Dolan at Bell Labs in the US fabricated and demonstrated how such a device works.<ref>{{cite web|url=https://physicsworld.com/a/single-electron-transistors/|title=Single-electron transistors|date=1998-09-01|access-date=2019-09-17|publisher=Physics World}}</ref> In 1992 [[Marc A. Kastner]] demonstrated the importance of the [[energy levels]] of the quantum dot.<ref>{{cite journal|last1=Kastner|first1=M. A.|date=1992-07-01|title=The single-electron transistor|journal=Rev. Mod. Phys.|volume=64|issue=3|pages=849–858|doi=10.1103/RevModPhys.64.849|bibcode=1992RvMP...64..849K}}</ref> In the late 1990s and early 2000s, Russian physicists S. P. Gubin, V. V. Kolesov, E. S. Soldatov, A. S. Trifonov, V. V. Khanin, G. B. Khomutov, and S. A. Yakovenko were the first ones to ever make a molecule based SET operational at room temperature.<ref>{{cite journal|last1=Gubin|first1=S. P.|last2=Gulayev|first2=Yu V.|last3=Khomutov|first3=G. B.|last4=Kislov|first4=V. V.|last5=Kolesov|first5=V. V.|last6=Soldatov|first6=E. S.|last7=Sulaimankulov|first7=K. S.|last8=Trifonov|first8=A. S.|title=Molecular clusters as building blocks for nanoelectronics: the first demonstration of a cluster single-electron tunnelling transistor at room temperature|doi=10.1088/0957-4484/13/2/311|journal=Nanotechnology|year=2002|pages=185–194|volume=13|issue=2|bibcode=2002Nanot..13..185G}}.</ref>