Content deleted Content added
m →History |
m →History |
||
Line 11:
A new subfield of condensed matter physics began in 1977 when [[David Thouless]] pointed out that, when made small enough, the size of a conductor affects its electronic properties.<ref>{{cite journal |last1=Thouless |first1=David J. |author-link=David J. Thouless| title=Maximum Metallic Resistance in Thin Wires |journal=Phys. Rev. Lett. |volume=39 |issue=18 |pages=1167–1169 |year=1977 |doi=10.1103/PhysRevLett.39.1167|bibcode=1977PhRvL..39.1167T }}</ref> This was followed by mesoscopic physics research in the 1980s based on the submicron-size of systems investigated.<ref>{{cite journal|last1=Al'Tshuler|first1=Boris L.|last2=Lee|first2=Patrick A.|title=Disordered electronic systems|journal=Physics Today|volume=41|issue=12|year=1988|pages=36–44|doi=10.1063/1.881139|bibcode=1988PhT....41l..36A}}</ref> Thus began research related to the single-electron transistor.
The first single-electron transistor based on the phenomenon of Coulomb blockade was reported in 1986 by Soviet scientists {{ill|K. K. Likharev|ru|Лихарев, Константин Константинович}} and D. V. Averin.<ref name=":1">{{Cite journal|last1=Averin|first1=D. V.|last2=Likharev|first2=K. K.|date=1986-02-01|title=Coulomb blockade of single-electron tunnelling, and coherent oscillations in small tunnel junctions|journal=Journal of Low Temperature Physics|language=en|volume=62|issue=3–4|pages=345–373|doi=10.1007/BF00683469|issn=0022-2291|bibcode=1986JLTP...62..345A|s2cid=120841063}}</ref> A couple
== Relevance ==
|