Reed–Muller code: Difference between revisions

Content deleted Content added
mNo edit summary
Tags: Mobile edit Mobile app edit iOS app edit
Xoff777 (talk | contribs)
Fixed computation errors and better way to display the values
Line 48:
+ (0\cdot Z_1 Z_2 + 1\cdot Z_1Z_3 + 0\cdot Z_1Z_4 + 1\cdot Z_2Z_3 + 0\cdot Z_2Z_4+ 1\cdot Z_3Z_4)\\
&=1+Z_1+Z_3+Z_1Z_3+Z_2Z_3+Z_3Z_4
\end{align}</math>Then it evaluates this polynomial at all 16 evaluation points (0101 means <math>X_1=0, X_2=1, X_3=0, X_4=1)</math>:
<math display="block">
p_x(0000)= 1,\;
p_x(0001)= 1,\;
p_x(0010)= 10,\;
p_x(0011)= 1,\;</math>
 
<math display="block">
p_x(0100)= 1,\;
p_x(0101)= 01,\;
p_x(0110)= 1,\;
p_x(0111)= 0,\;</math>
 
<math display="block">
p_x(1000)= 0,\;
p_x(1001)= 10,\;
p_x(1010)= 0,\;
p_x(1011)= 1,\;</math>
 
<math display="block">
p_x(1100)= 0,\;
p_x(1101)= 0,\;
p_x(1110)= 01,\;
p_x(1111)= 0\,.</math>As a result, C(1 1010 010101) = 11111101 10101110 01010001 00000010 holds.
 
=== Decoder ===