Arithmetic function: Difference between revisions

Content deleted Content added
MathWorld is a mediocre source at best, but is an *especially* bad source for names of things
Line 2:
 
{{short description|Function whose ___domain is the positive integers}}
In [[number theory]], an '''arithmetic''', '''arithmetical''', '''integer''' or '''number-theoretic function'''<ref>{{harvtxt|Long|1972|p=151}}</ref><ref>{{harvtxt|Pettofrezzo|Byrkit|1970|p=58}}</ref><ref>{{harvtxt|Weisstein|2003|}}</ref> is for most authors<ref>Niven & Zuckerman, 4.2.</ref><ref>Nagell, I.9.</ref><ref>Bateman & Diamond, 2.1.</ref> any [[Function (mathematics)|function]] ''f''(''n'') whose ___domain is the [[natural number|positive integers]] and whose range is a [[subset]] of the [[complex number]]s. Hardy & Wright include in their definition the requirement that an arithmetical function "expresses some arithmetical property of ''n''".<ref>Hardy & Wright, intro. to Ch. XVI</ref>
 
An example of an arithmetic function is the [[divisor function]] whose value at a positive integer ''n'' is equal to the number of divisors of ''n''.
Line 791:
| isbn = 978-0-8218-2076-6}}
* {{citation | last=Williams | first=Kenneth S. | title=Number theory in the spirit of Liouville | zbl=1227.11002 | series=London Mathematical Society Student Texts | volume=76 | ___location=Cambridge | publisher=[[Cambridge University Press]] | isbn=978-0-521-17562-3 | year=2011 }}
* {{cite encyclopedia
|title= Integer Function
|encyclopedia= MathWorld
|last= Weisstein
|first= Eric S.
|publisher= Wolfram Research
|url= https://mathworld.wolfram.com/IntegerFunction.html
|date= 2003-07-14
|access-date= 2022-11-26
}}
 
==Further reading==