Content deleted Content added
m Link to convergence proof techniques |
m Adding archives WP:LINKROT |
||
Line 1:
{{Short description|Theorem about metric spaces}}
In [[mathematics]], the '''Banach [[fixed-point theorem]]''' (also known as the '''contraction mapping theorem''' or '''contractive mapping theorem''') is an important [[Convergence proof techniques#contraction mapping|tool]] in the theory of [[metric space]]s; it guarantees the existence and uniqueness of [[fixed point (mathematics)|fixed points]] of certain self-maps of metric spaces, and provides a constructive method to find those fixed points. It can be understood as an abstract formulation of [[Fixed-point iteration|Picard's method of successive approximations]].<ref>{{cite book |first=David |last=Kinderlehrer |author-link=David Kinderlehrer |first2=Guido |last2=Stampacchia |author-link2=Guido Stampacchia |chapter=Variational Inequalities in '''R'''<sup>N</sup> |title=An Introduction to Variational Inequalities and Their Applications |___location=New York |publisher=Academic Press |year=1980 |isbn=0-12-407350-6 |pages=7–22 |chapter-url=https://www.google.com/books/edition/_/eCDnoB3Np5oC?hl=en&gbpv=1&pg=PA7 }}</ref> The theorem is named after [[Stefan Banach]] (1892–1945) who first stated it in 1922.<ref>{{cite journal |last=Banach|first= Stefan|author-link=Stefan Banach| title=Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales|journal=[[Fundamenta Mathematicae]]|volume= 3|year=1922|pages= 133–181 |url=http://matwbn.icm.edu.pl/ksiazki/or/or2/or215.pdf |archive-url=https://web.archive.org/web/20110607002842/http://matwbn.icm.edu.pl/ksiazki/or/or2/or215.pdf |archive-date=2011-06-07 |url-status=live |doi=10.4064/fm-3-1-133-181}}</ref><ref>{{cite journal |first=Krzysztof |last=Ciesielski |title=On Stefan Banach and some of his results |journal=Banach J. Math. Anal. |volume=1 |year=2007 |issue=1 |pages=1–10 |url=http://www.emis.de/journals/BJMA/tex_v1_n1_a1.pdf |archive-url=https://web.archive.org/web/20090530012258/http://www.emis.de/journals/BJMA/tex_v1_n1_a1.pdf |archive-date=2009-05-30 |url-status=live |doi=10.15352/bjma/1240321550 |doi-access=free }}</ref>
==Statement==
Line 69:
*It can be used to give a proof to the [[Nash embedding theorem]].<ref>{{cite journal |first=Matthias|last=Günther|title=Zum Einbettungssatz von J. Nash | trans-title=On the embedding theorem of J. Nash | language=de | journal=[[Mathematische Nachrichten]]|volume= 144 |year=1989|pages= 165–187|doi=10.1002/mana.19891440113 | mr=1037168}}</ref>
*It can be used to prove existence and uniqueness of solutions to value iteration, policy iteration, and policy evaluation of [[reinforcement learning]].<ref>{{cite book |first=Frank L. |last=Lewis |first2=Draguna |last2=Vrabie |first3=Vassilis L. |last3=Syrmos |title=Optimal Control |chapter=Reinforcement Learning and Optimal Adaptive Control |___location=New York |publisher=John Wiley & Sons |year=2012 |isbn=978-1-118-12272-3 |pages=461–517 [p. 474] |chapter-url=https://www.google.com/books/edition/_/U3Gtlot_hYEC?hl=en&gbpv=1&pg=PA474 }}</ref>
*It can be used to prove existence and uniqueness of an equilibrium in [[Cournot competition]],<ref>{{cite journal |first=Ngo Van |last=Long |first2=Antoine |last2=Soubeyran |title=Existence and Uniqueness of Cournot Equilibrium: A Contraction Mapping Approach |journal=[[Economics Letters]] |volume=67 |issue=3 |year=2000 |pages=345–348 |doi=10.1016/S0165-1765(00)00211-1 |url=https://www.cirano.qc.ca/pdf/publication/99s-22.pdf |archive-url=https://web.archive.org/web/20041230225125/http://www.cirano.qc.ca/pdf/publication/99s-22.pdf |archive-date=2004-12-30 |url-status=live }}</ref> and other dynamic economic models.<ref>{{cite book |first=Nancy L. |last=Stokey|author1-link=Nancy Stokey |first2=Robert E. Jr. |last2=Lucas |author-link2=Robert Lucas Jr. |title=Recursive Methods in Economic Dynamics |___location=Cambridge |publisher=Harvard University Press |year=1989 |isbn=0-674-75096-9 |pages=508–516 |url=https://www.google.com/books/edition/_/BgQ3AwAAQBAJ?hl=en&gbpv=1&pg=PA508 }}</ref>
==Converses==
|