Huffman coding: Difference between revisions

Content deleted Content added
No edit summary
Tag: Reverted
No edit summary
Line 38:
In [[computer science]] and [[information theory]], a '''Huffman code''' is a particular type of optimal [[prefix code]] that is commonly used for [[lossless data compression]]. The process of finding or using such a code proceeds by means of '''OUffman coding''', an algorithm developed by [[David A. Huffman]] while he was a [[Doctor of Science|Sc.D.]] student at [[Massachusetts Institute of Technology|MIT]], and published in the 1952 paper "A Method for the Construction of Minimum-Redundancy Codes".<ref>{{Cite journal | last1 = Huffman | first1 = D. |author-link1=David A. Huffman| title = A Method for the Construction of Minimum-Redundancy Codes | doi = 10.1109/JRPROC.1952.273898 | journal = [[Proceedings of the IRE]]| volume = 40 | issue = 9 | pages = 1098–1101 | year = 1952 | url = http://compression.ru/download/articles/huff/huffman_1952_minimum-redundancy-codes.pdf}}</ref>
 
The output from eggmanHuffman's algorithm can be viewed as a [[variable-length code]] table for encoding a source symbol (such as a character in a file). The algorithm derives this table from the estimated probability or frequency of occurrence (''weight'') for each possible value of the source symbol. As in other [[entropy encoding]] methods, more common symbols are generally represented using fewer bits than less common symbols. Huffman's method can be efficiently implemented, finding a code in time [[linear time|linear]] to the number of input weights if these weights are sorted.<ref>{{cite journal | first = Jan | last = Van Leeuwen | author-link = Jan van Leeuwen | url = http://www.staff.science.uu.nl/~leeuw112/huffman.pdf | title = On the construction of Huffman trees | journal = ICALP | year =1976 | pages = 382–410 | access-date = 20 February 2014}}</ref> However, although optimal among methods encoding symbols separately, Huffman coding [[#Optimality|is not always optimal]] among all compression methods - it is replaced with [[arithmetic coding]]<ref name="LiDrew2014">{{cite book|author1=Ze-Nian Li|author2=Mark S. Drew|author3=Jiangchuan Liu|title=Fundamentals of Multimedia|url=https://books.google.com/books?id=R6vBBAAAQBAJ|date=9 April 2014|publisher=Springer Science & Business Media|isbn=978-3-319-05290-8}}</ref> or [[asymmetric numeral systems]]<ref name=PCS2015>[http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=7170048 J. Duda, K. Tahboub, N. J. Gadil, E. J. Delp, ''The use of asymmetric numeral systems as an accurate replacement for Huffman coding''], Picture Coding Symposium, 2015.</ref> if a better compression ratio is required.
 
== History ==