Content deleted Content added
Improved flow of the text |
|||
Line 9:
</math>
where <math>f_i: \mathbb{R}^N \rightarrow \mathbb{R},\ i = 1, \dots, n</math> are possibly non-differentiable [[convex functions]]. The lack of differentiability rules out conventional smooth optimization techniques like the [[Gradient descent|steepest descent method]] and the [[conjugate gradient method]], but proximal gradient methods can be used instead.
{{cite journal | last1=Daubechies | first1=I | last2=Defrise | first2 = M | last3 = De Mol| first3 = C|author3-link= Christine De Mol | title=An iterative thresholding algorithm for linear inverse problems with a sparsity constraint |journal= Communications on Pure and Applied Mathematics|volume=57 | issue=11 |year=2004|pages=1413–1457| bibcode=2003math......7152D | arxiv=math/0307152 |doi=10.1002/cpa.20042}}</ref> [[Landweber iteration|projected Landweber]], projected gradient, [[alternating projection]]s, [[Alternating direction method of multipliers#Alternating direction method of multipliers|alternating-direction method of multipliers]], alternating▼
split [[Bregman method|Bregman]] are special instances of proximal algorithms.<ref>Details of proximal methods are discussed in {{cite arXiv |last1=Combettes |first1=Patrick L. |last2= Pesquet |first2=Jean-Christophe |title=Proximal Splitting Methods in Signal Processing|page=|year=2009 |eprint=0912.3522|class=math.OC }}</ref>
▲{{cite journal | last1=Daubechies | first1=I | last2=Defrise | first2 = M | last3 = De Mol| first3 = C|author3-link= Christine De Mol | title=An iterative thresholding algorithm for linear inverse problems with a sparsity constraint |journal= Communications on Pure and Applied Mathematics|volume=57 | issue=11 |year=2004|pages=1413–1457| bibcode=2003math......7152D | arxiv=math/0307152 |doi=10.1002/cpa.20042}}</ref> [[Landweber iteration|projected Landweber]], projected
For the theory of proximal gradient methods from the perspective of and with applications to [[statistical learning theory]], see [[proximal gradient methods for learning]].
▲split [[Bregman method|Bregman]] are special instances of proximal algorithms.<ref>Details of proximal methods are discussed in {{cite arXiv |last1=Combettes |first1=Patrick L. |last2= Pesquet |first2=Jean-Christophe |title=Proximal Splitting Methods in Signal Processing|page=|year=2009 |eprint=0912.3522|class=math.OC }}</ref> For the theory of proximal gradient methods from the perspective of and with applications to [[statistical learning theory]], see [[proximal gradient methods for learning]].
== Notations and terminology ==
|