Content deleted Content added
Citation bot (talk | contribs) Add: s2cid, authors 1-1. Removed parameters. Some additions/deletions were parameter name changes. | Use this bot. Report bugs. | Suggested by Whoop whoop pull up | #UCB_webform 224/3485 |
No edit summary Tags: Mobile edit Mobile web edit Advanced mobile edit |
||
Line 12:
# a discretization of the [[Domain of a function|___domain]] in the style of the [[finite element method]],
# the assumption that the solution can be approximated as a separate representation and
# a numerical [[greedy algorithm]] to find the solution.<ref>{{Cite journal|
=== Variational formulation ===
The most implemented variational formulation in PGD is the [[Bubnov-Galerkin method]],<ref name=":0">{{Cite thesis |title=Proper generalised decompositions: theory and applications | url=http://orca.cf.ac.uk/73515/| publisher=Cardiff University |date=2015-04-09 |degree=phd | language=en |first=Thomas Lloyd David|last=Croft}}</ref><ref>{{Cite book| last1=Chinesta|first1=Francisco| url=https://www.springer.com/gp/book/9783319028644| title=The Proper Generalized Decomposition for Advanced Numerical Simulations: A Primer| last2=Keunings|first2=Roland| last3=Leygue|first3=Adrien| date=2014| publisher=Springer International Publishing |isbn=978-3-319-02864-4 | series=SpringerBriefs in Applied Sciences and Technology| language=en}}</ref> although other implementations exist.<ref>{{Cite web |url=https://hal.archives-ouvertes.fr/tel-01926078/document |title=Advanced strategies for the separated formulation of problems in the Proper Generalized Decomposition framework| last=Aguado | first=José Vicente| date=18 Nov 2018}}</ref><ref name=":0" />
=== Domain discretization ===
Line 22:
=== Separate representation ===
PGD assumes that the solution '''u''' of a (multidimensional) problem can be approximated as a separate representation of the form
▲::<math> \mathbf{u} \approx \mathbf{u}^N(x_1, x_2, \ldots, x_d) = \sum_{i=1}^N \mathbf{X_1}_i(x_1) \cdot \mathbf{X_2}_i(x_2) \cdots \mathbf{X_d}_i(x_d), </math>
where the number of addends ''N'' and the functional products '''X<sub>1</sub>'''(''x''<sub>1</sub>), '''X<sub>2</sub>'''(''x''<sub>2</sub>), ..., '''X<sub>d</sub>'''(''x''<sub>d</sub>), each depending on a variable (or variables), are unknown beforehand.
Line 34 ⟶ 32:
Therefore, PGD enables to re-adapt parametric problems into a multidimensional framework by setting the parameters of the problem as extra coordinates:
▲::<math> \mathbf{u} \approx \mathbf{u}^N(x_1, \ldots, x_d; k_1, \ldots, k_p) = \sum_{i=1}^N \mathbf{X_1}_i(x_1) \cdots \mathbf{X_d}_i(x_d) \cdot \mathbf{K_1}_i(k_1) \cdots \mathbf{K_p}_i(k_p),</math>
where a series of functional products '''K<sub>1</sub>'''(''k''<sub>1</sub>), '''K<sub>2</sub>'''(''k''<sub>2</sub>), ..., '''K<sub>p</sub>'''(''k''<sub>p</sub>), each depending on a parameter (or parameters), has been incorporated to the equation.
|