Content deleted Content added
Reworded and clarified |
|||
Line 3:
An operator between two [[normed space]]s is a [[bounded linear operator]] if and only if it is a continuous linear operator.
==
{{See also|Continuous function (topology)|Discontinuous linear map}}
===
{{See also|Bounded operator}}
Line 17 ⟶ 18:
</ol>
<ol start=4>
<li>for every continuous [[seminorm]] <math>q</math> on <math>Y,</math> there exists a continuous seminorm <math>p</math> on <math>X</math> such that <math>q \circ F \leq p.</math>{{sfn|Narici|Beckenstein|2011|pp=126-128}}</li>
</ol>
<ol start=5>
<li><math>F</math> is [[weakly continuous]] and its [[transpose]] <math>{}^t F : Y^{\prime} \to X^{\prime}</math> maps [[Equicontinuity|equicontinuous]] subsets of <math>Y^{\prime}</math> to equicontinuous subsets of <math>X^{\prime}.</math></li>
</ol>
<ol start=6>
<li><math>F</math> is [[Sequential continuity at a point|sequentially continuous]] at some (or equivalently, at every) point of its ___domain.</li>
</ol>
<ol start=7>
<li><math>F</math> is a [[bounded linear operator]] (that is, it maps bounded subsets of <math>X</math> to bounded subsets of <math>Y</math>).{{sfn|Narici|Beckenstein|2011|pp=156-175}}</li>
</ol>
<ol start=8>
<li><math>F</math> maps some neighborhood of 0 to a bounded subset of <math>Y.</math>{{sfn|Wilansky|2013|p=54}}</li>
</ol>
<ol start=9>
<li>for every <math>r > 0</math> there exists some <math>\delta > 0</math> such that <math display=block>\text{ for all } x, y \in X, \text{ if } \|x - y\| < \delta \text{ then } \|F x - F y\| < r.</math></li>
</ol>
<ol start=10>
<li>the graph of <math>F</math> is closed in <math>X \times Y.</math>{{sfn|Narici|Beckenstein|2011|p=476}}</li>
Line 152 ⟶ 153:
</li>
<li><math>f</math> is [[#bounded on a neighborhood of|bounded on a neighborhood of the origin]]. Said differently, <math>f</math> is a [[#locally bounded at|locally bounded at the origin.]]
* The equality <math>\sup_{x \in s U} |f(x)| = |s| \sup_{u \in U} |f(u)|</math> holds for all scalars <math>s</math> and when <math>s \neq 0</math> then <math>s U</math> will be neighborhood of the origin. So in particular, if <math display=inline>R := \displaystyle\sup_{u \in U} |f(u)|</math> is a positive real number then for every positive real <math>r > 0,</math> the set <math>N_r := \tfrac{r}{R} U</math> is
</li>
<li>There exists some neighborhood <math>U</math> of the origin such that <math>\sup_{u \in U} |f(u)| \leq 1</math>
* This inequality holds if and only if <math>\sup_{x \in r U} |f(x)| \leq r</math> for every real <math>r > 0,</math> which shows that the positive scalar multiples <math>\{r U : r > 0\}</math> of this single neighborhood <math>U</math> will satisfy the definition of [[Continuity at a point|continuity at the origin]] given in (4) above.
* By definition of the set <math>U^
</li>
<li><math>f</math> is a [[#locally bounded|locally bounded at every point]] of its ___domain.</li>
Line 167 ⟶ 168:
</ol>
<ol start=14>
<li>The imaginary part <math>\operatorname{Im} f</math> of <math>f</math> is continuous.</li>
</ol>
<ol start=15>
<li><math>f</math> is [[Sequential continuity at a point|sequentially continuous]] at some (or equivalently, at every) point of its ___domain.{{sfn|Narici|Beckenstein|2011|pp=156-175}}</li>
</ol>
<ol start=16>
<li><math>f</math> is a [[bounded linear operator]] (that is, it maps bounded subsets of its ___domain to bounded subsets of its codomain).{{sfn|Narici|Beckenstein|2011|pp=156-175}}</li>
</ol>
<ol start=17>
<li><math>f</math> is a [[bounded linear operator]].{{sfn|Narici|Beckenstein|2011|pp=156-175}}</li>
Line 193 ⟶ 194:
<li>There exists a continuous seminorm <math>p</math> on <math>X</math> such that <math>f \leq p.</math>{{sfn|Narici|Beckenstein|2011|pp=126-128}}</li>
<li>For some real <math>r,</math> the half-space <math>\{x \in X : f(x) \leq r\}</math> is closed.</li>
<li>
</ol>
Line 219 ⟶ 220:
Every non-trivial continuous linear functional on a TVS <math>X</math> is an [[open map]].{{sfn|Narici|Beckenstein|2011|pp=126-128}}
If <math>f : X \to \mathbb{F}</math> is a linear functional and <math>U \subseteq X</math> is a non-empty subset, then by defining the sets
Line 227 ⟶ 228:
If <math>s</math> is a scalar then
<math display=block>\sup |f(sU)| ~=~ |s| \sup |f(U)|</math>
so that if <math>r > 0</math> is a real number and <math>
#<math display=inline>f(U) \subseteq B_{\leq 1}</math>
#<math display=inline>\sup |f(U)| \leq 1</math>
#<math display=inline>\sup |f(rU)| \leq r</math>
#<math display=inline>f(r U) \subseteq B_{\leq r}.</math>
==See also==
Line 242 ⟶ 246:
* {{annotated link|Positive linear functional}}
* {{annotated link|Topologies on spaces of linear maps}}
* {{annotated link|Unbounded operator}}
Line 269 ⟶ 272:
{{Topological vector spaces}}
[[Category:Theory of continuous functions]]▼
[[Category:Functional analysis]]
[[Category:Linear operators]]
[[Category:Operator theory]]
▲[[Category:Theory of continuous functions]]
|