Divisor function: Difference between revisions

Content deleted Content added
Citation bot (talk | contribs)
Add: issue, url. | Use this bot. Report bugs. | Suggested by Corvus florensis | #UCB_webform 969/1746
Line 191:
| title = Highly Composite Numbers
| volume = s2-14
| year = 1915| url = https://zenodo.org/record/1433496 }}; see section 47, pp. 405–406, reproduced in ''Collected Papers of Srinivasa Ramanujan'', Cambridge Univ. Press, 2015, [https://books.google.com/books?id=h1G2CgAAQBAJ&pg=PA124 pp. 124–125]</ref>
 
Clearly, <math>1 < \sigma_0(n) < n</math> for all <math>n > 2</math>, and <math>\sigma_x(n) > n </math> for all <math>n > 1</math>, <math>x > 0</math> .
Line 361:
| title = Amicable numbers with opposite parity
| volume = 74
| year = 1967}}| issue = 8
}}
* {{Citation | last1=Grönwall | first1=Thomas Hakon | author1-link=Thomas Hakon Grönwall | title=Some asymptotic expressions in the theory of numbers | year=1913 | journal=Transactions of the American Mathematical Society | volume=14 | pages=113–122 | doi=10.1090/S0002-9947-1913-1500940-6| doi-access=free }}
* {{Citation | last1=Hardy | first1=G. H. | author1-link=G. H. Hardy | last2=Wright | first2=E. M. | author2-link=E. M. Wright | edition=6th | others=Revised by [[Roger Heath-Brown|D. R. Heath-Brown]] and [[Joseph H. Silverman|J. H. Silverman]]. Foreword by [[Andrew Wiles]]. | title=An Introduction to the Theory of Numbers | publisher=[[Oxford University Press]] | ___location=Oxford | isbn=978-0-19-921986-5 | mr=2445243 | zbl=1159.11001 | year=2008 | orig-year=1938}}