Multiphysics simulation: Difference between revisions

Content deleted Content added
Genre.hu (talk | contribs)
add emphasis on the coupling between simulations of different aspects
Citation bot (talk | contribs)
Add: s2cid, authors 1-1. Removed parameters. Some additions/deletions were parameter name changes. | Use this bot. Report bugs. | Suggested by Corvus florensis | #UCB_webform 2651/3000
Line 1:
In [[computational model|computational modelling]], '''multiphysics simulation''' (often shortened to simply "multiphysics") is defined as the simultaneous simulation of different aspects of a physical system or systems and the interactions among them.<ref name=":0">{{Cite book|last=Liu|first=Zhen|url=https://www.worldcat.org/oclc/1044733613|title=Multiphysics in Porous Materials|date=2018|publisher=Springer|isbn=978-3-319-93028-2|___location=Cham, Switzerland|oclc=1044733613}}</ref> For example, simultaneous simulation of the physical stress on an object, the temperature distribution of the object and the thermal expansion which leads to the variation of the stress and temperature distributions would be considered a multiphysics simulation.<ref>{{Cite news|url=https://eandt.theiet.org/content/articles/2015/03/multiphysics-brings-the-real-world-into-simulations/|title=Multiphysics brings the real world into simulations|date=2015-03-16|access-date=2018-08-19|language=en-US}}</ref> Multiphysics simulation is related to multiscale simulation, which is the simultaneous simulation of a single process on either multiple time or distance scales.<ref>{{Cite journal|lastlast1=Groen|firstfirst1=Derek|last2=Zasada|first2=Stefan J.|last3=Coveney|first3=Peter V.|date=March 2014|title=Survey of Multiscale and Multiphysics Applications and Communities|url=https://doi.org/10.1109/MCSE.2013.47|journal=Computing in Science & Engineering|volume=16|issue=2|pages=34–43|arxiv=1208.6444|doi=10.1109/mcse.2013.47|s2cid=6301539 |issn=1521-9615}}</ref>
 
As an [[Interdisciplinarity|interdisciplinary]] field, multiphysics simulation can span many science and engineering disciplines. Simulation methods frequently include [[numerical analysis]], [[partial differential equations]] and [[tensor analysis]].<ref>{{Cite web|url=https://www.multiphysics.us|title=Multiphysics Learning & Networking - Home Page|website=www.multiphysics.us|access-date=2018-08-19}}</ref>
Line 17:
== Mathematical models ==
{{see also|Mathematical models}}
Mathematical models used in multiphysics simulations are generally a set of coupled equations. The equations can be divided into three categories according to the nature and intended role: [[governing equations|governing equation]], [[characteristic equation (calculus)|auxiliary equations]] and [[boundary value problem|boundary/initial conditions]]. A governing equation describes a major physical mechanisms or process. Multiphysics simulations are numerically implemented with [[Discretization|discretization]] methods such as the [[finite element method]], [[finite difference method]], or [[finite volume method]].<ref>{{Cite journal|lastlast1=Bagwell|firstfirst1=Scott|last2=Ledger|first2=Paul D|last3=Gil|first3=Antonio J|last4=Mallett|first4=Mike|last5=Kruip|first5=Marcel|date=2017-12-07|title=A linearised ''hp''-finite element framework for acousto-magneto-mechanical coupling in axisymmetric MRI scanners|url=https://onlinelibrary.wiley.com/doi/10.1002/nme.5559|journal=International Journal for Numerical Methods in Engineering|language=en|volume=112|issue=10|pages=1323–1352|doi=10.1002/nme.5559|s2cid=125715500 }}</ref>
 
== Challenges of multiphysics simulation ==