Ray transfer matrix analysis: Difference between revisions

Content deleted Content added
Corrected some mathematical errors.
Citation bot (talk | contribs)
Alter: pages. Add: s2cid, pmid, authors 1-1. Removed parameters. Some additions/deletions were parameter name changes. | Use this bot. Report bugs. | Suggested by Corvus florensis | #UCB_webform 154/3500
Line 59:
 
== Eigenvalues of Ray Transfer Matrix ==
A ray transfer matrix can be regarded as a [[linear canonical transformation]]. According to the eigenvalues of the optical system, the system can be classified into several classes.<ref>{{Cite journal|lastlast1=Bastiaans|firstfirst1=Martin J.|last2=Alieva|first2=Tatiana|date=2007-03-14|title=Classification of lossless first-order optical systems and the linear canonical transformation|url=http://dx.doi.org/10.1364/josaa.24.001053|journal=Journal of the Optical Society of America A|volume=24|issue=4|pages=10531053–1062|doi=10.1364/josaa.24.001053|pmid=17361291 |issn=1084-7529}}</ref> Assume the ABCD matrix representing a system relates the output ray to the input according to
 
<math> \begin{bmatrix}x_2 \\ \theta_2\end{bmatrix} = \begin{bmatrix} A & B \\ C & D \end{bmatrix} \begin{bmatrix}x_1 \\ \theta_1\end{bmatrix}
Line 147:
 
== Relation between geometrical ray optics and wave optics ==
The theory of [[Linear canonical transformation]] implies the relation between ray transfermatrix ([[geometrical optics]]) and wave optics.<ref>{{Cite journal|lastlast1=Nazarathy|firstfirst1=Moshe|last2=Shamir|first2=Joseph|date=1982-03-01|title=First-order optics—a canonical operator representation: lossless systems|url=http://dx.doi.org/10.1364/josa.72.000356|journal=Journal of the Optical Society of America|volume=72|issue=3|pages=356|doi=10.1364/josa.72.000356|issn=0030-3941}}</ref>
{| border="1" cellspacing="0" cellpadding="4"
!Element
Line 300:
 
== Ray transfer matrices for Gaussian beams ==
The same matrices can also be used to calculate the evolution of [[Gaussian beam]]s.<ref>{{cite journal|last1=Rashidian vaziri|first1=M R|title=New ducting model for analyzing the Gaussian beam propagation in nonlinear Kerr media and its application to spatial self-phase modulations|journal=Journal of Optics|volume=15|issue=3|pages=035202|doi=10.1088/2040-8978/15/3/035202|bibcode=2013JOpt...15c5202R|year=2013|s2cid=123550261 }}</ref> propagating through optical components described by the same transmission matrices. If we have a Gaussian beam of wavelength <math>\lambda_0</math>, radius of curvature ''R'' (positive for diverging, negative for converging), beam spot size ''w'' and refractive index ''n'', it is possible to define a [[complex beam parameter]] ''q'' by:<ref name=Lei/>
 
:<math> \frac{1}{q} = \frac{1}{R} - \frac{i\lambda_0}{\pi n w^2} . </math>