Content deleted Content added
Added example |
|||
Line 5:
More general definitions of this kind of function can be obtained, by replacing the [[absolute value]] by the distance function in a [[metric space]], or by using the definition of continuity in a [[topological space]].
==Examples
===Dirichlet function===
Line 24:
Nevertheless, the restriction of any additive function <math>f : \Reals \to \Reals</math> to any real scalar multiple of the rational numbers <math>\Q</math> is continuous; explicitly, this means that for every real <math>r \in \Reals,</math> the restriction <math>f\big\vert_{r \Q} : r \, \Q \to \Reals</math> to the set <math>r \, \Q := \{r q : q \in \Q\}</math> is a continuous function.
Thus if <math>f : \Reals \to \Reals</math> is a non-linear additive function then for every point <math>x \in \Reals,</math> <math>f</math> is discontinuous at <math>x</math> but <math>x</math> is also contained in some [[Dense set|dense subset]] <math>D \subseteq \Reals</math> on which <math>f</math>'s restriction <math>f\vert_D : D \to \Reals</math> is continuous (specifically, take <math>D := x \, \Q</math> if <math>x \neq 0,</math> and take <math>D := \Q</math> if <math>x = 0</math>).
===Other functions===
The [[Conway base 13 function]] is discontinuous at every point.
==Hyperreal characterisation==
|