Content deleted Content added
No edit summary |
No edit summary |
||
Line 15:
* The qubit complexity is of order <math>\epsilon^{-2}\log\epsilon^{-1}</math>.
Thus the qubit complexity of path integration is a second degree polynomial in <math>\epsilon^{-1}</math>. That seems pretty good but we probably won't have enough qubits for a long time to do new science especially with error correction. Since this is a complexity result we can't do better by inventing a clever new algorithm. But perhaps we can do better by slightly modifying the
In the standard model of quantum computation the
==Applications==
Besides path integration there have been numerous recent papers studying
*Bessen, A. J. (2005), A lower bound for phase estimation, Physical Review A, 71(4), 042313. Also http://arXiv.org/quant-ph/0412008.
Line 35:
*Papageorgiou, A. and Wo´zniakowski, H. (2007), The Sturm-Liouville Eigenvalue Problem and NP-Complete Problems in the Quantum Setting with Queries, Quantum Information Processing, 6(2), 101-120. Also http://arXiv.org/quant-ph/0504194.
*Traub, J. F. and Wo´zniakowski, H. (2002), Path integration on a quantum computer, Quantum Information Processing, 1(5), 365–388, 2002. Also http://arXiv.org/quant-ph/0109113.
*
==External links==
|