Content deleted Content added
m Update link - looks like Auckland changed the URL format for downloading these reports |
m Open access bot: doi added to citation with #oabot. |
||
Line 55:
===Reservoir computing===
{{main|Reservoir computing}}
Reservoir computing is a computational framework derived from recurrent neural network theory that involves mapping input signals into higher dimensional computational spaces through the dynamics of a fixed, non-linear system called a reservoir. The reservoir, which can be virtual or physical, is made up of individual non-linear units that are connected in recurrent loops, allowing it to store information. Training is performed only at the readout stage, as the reservoir dynamics are fixed, and this framework allows for the use of naturally available systems, both classical and quantum mechanical, to reduce the effective computational cost. One key benefit of reservoir computing is that it allows for a simple and fast learning algorithm, as well as hardware implementation through [[Reservoir computing#Physical reservoir computers|physical reservoirs]].<ref>{{Cite journal|last=Tanaka|first=Gouhei|last2=Yamane|first2=Toshiyuki|last3=Héroux|first3=Jean Benoit|last4=Nakane|first4=Ryosho|last5=Kanazawa|first5=Naoki|last6=Takeda|first6=Seiji|last7=Numata|first7=Hidetoshi|last8=Nakano|first8=Daiju|last9=Hirose|first9=Akira|date=2019-07-01|title=Recent advances in physical reservoir computing: A review|url=https://www.sciencedirect.com/science/article/pii/S0893608019300784|journal=Neural Networks|language=en|volume=115|pages=100–123|doi=10.1016/j.neunet.2019.03.005|issn=0893-6080|doi-access=free}}</ref><ref>{{Cite journal|last1=Röhm|first1=André|last2=Lüdge|first2=Kathy|date=2018-08-03|title=Multiplexed networks: reservoir computing with virtual and real nodes|journal=Journal of Physics Communications|volume=2|issue=8|pages=085007|bibcode=2018JPhCo...2h5007R|doi=10.1088/2399-6528/aad56d|issn=2399-6528|doi-access=free}}</ref> <br />
===Tangible computing===
Line 153:
===Neuroscience===
{{main|Neuromorphic computing|wetware computer}}
Neuromorphic computing involves using electronic circuits to mimic the neurobiological architectures found in the human nervous system, with the goal of creating artificial neural systems that are inspired by biological ones.<ref>{{Cite journal |last1=Ham |first1=Donhee |last2=Park |first2=Hongkun |last3=Hwang |first3=Sungwoo |last4=Kim |first4=Kinam |title=Neuromorphic electronics based on copying and pasting the brain |url=https://www.nature.com/articles/s41928-021-00646-1 |journal=Nature Electronics |year=2021 |language=en |volume=4 |issue=9 |pages=635–644 |doi=10.1038/s41928-021-00646-1 |s2cid=240580331 |issn=2520-1131}}</ref><ref>{{Cite journal |last1=van de Burgt |first1=Yoeri |last2=Lubberman |first2=Ewout |last3=Fuller |first3=Elliot J. |last4=Keene |first4=Scott T. |last5=Faria |first5=Grégorio C. |last6=Agarwal |first6=Sapan |last7=Marinella |first7=Matthew J. |last8=Alec Talin |first8=A. |last9=Salleo |first9=Alberto |date=April 2017 |title=A non-volatile organic electrochemical device as a low-voltage artificial synapse for neuromorphic computing |url=https://www.nature.com/articles/nmat4856 |journal=Nature Materials |language=en |volume=16 |issue=4 |pages=414–418 |doi=10.1038/nmat4856 |pmid=28218920 |bibcode=2017NatMa..16..414V |issn=1476-4660}}</ref> These systems can be implemented using a variety of hardware, such as memristors,<ref name="Maan 1–13">{{Cite journal|last1=Maan|first1=A. K.|last2=Jayadevi|first2=D. A.|last3=James|first3=A. P.|date=2016-01-01|title=A Survey of Memristive Threshold Logic Circuits|journal=IEEE Transactions on Neural Networks and Learning Systems|volume=PP|issue=99|pages=1734–1746|doi=10.1109/TNNLS.2016.2547842|pmid=27164608|issn=2162-237X|arxiv=1604.07121|bibcode=2016arXiv160407121M|s2cid=1798273}}</ref> spintronic memories, and transistors,<ref>{{Cite journal|title = Mott Memory and Neuromorphic Devices|journal = Proceedings of the IEEE|date = 2015-08-01|issn = 0018-9219|pages = 1289–1310|volume = 103|issue = 8|doi = 10.1109/JPROC.2015.2431914|first1 = You|last1 = Zhou|first2 = S.|last2 = Ramanathan|s2cid = 11347598|url=https://zenodo.org/record/895565}}</ref><ref name=":2">{{Cite journal|title=Neuromorphic Circuits With Neural Modulation Enhancing the Information Content of Neural Signaling {{!}} International Conference on Neuromorphic Systems 2020|language=EN|doi=10.1145/3407197.3407204|s2cid=220794387|doi-access=free}}</ref> and can be trained using a range of software-based approaches, including error backpropagation<ref>{{cite journal |last1=Eshraghian|first1=Jason K.|last2=Ward|first2=Max|last3=Neftci |first3=Emre|last4=Wang|first4=Xinxin|last5=Lenz|first5=Gregor|last6=Dwivedi|first6=Girish|last7=Bennamoun|first7=Mohammed|last8=Jeong|first8=Doo Seok|last9=Lu|first9=Wei D.|title=Training Spiking Neural Networks Using Lessons from Deep Learning |date=1 October 2021 |arxiv=2109.12894 }}</ref> and canonical learning rules.<ref>{{Cite web |url=https://github.com/Hananel-Hazan/bindsnet | title=Hananel-Hazan/bindsnet: Simulation of spiking neural networks (SNNs) using PyTorch.| website=[[GitHub]]| date=31 March 2020}}</ref> The field of neuromorphic engineering seeks to understand how the design and structure of artificial neural systems affects their computation, representation of information, adaptability, and overall function, with the ultimate aim of creating systems that exhibit similar properties to those found in nature. Wetware computers, which are composed of living neurons, are a conceptual form of neuromorphic computing that has been explored in limited prototypes.<ref name=":1">{{cite web |author=Sincell, Mark |title=Future Tech |work=Discover |url=http://discovermagazine.com/2000/oct/feattech |access-date=2018-02-06}}</ref>
===Cellular automata and amorphous computing===
|