Karatsuba algorithm: Difference between revisions

Content deleted Content added
move the values to be compared closer to each other
Basic step: describe the tricky shortcut in more detail
Line 61:
These formulae require four multiplications and were known to [[Charles Babbage]].<ref>Charles Babbage, Chapter VIII – Of the Analytical Engine, Larger Numbers Treated, [https://archive.org/details/bub_gb_Fa1JAAAAMAAJ/page/n142 <!-- pg=125 --> Passages from the Life of a Philosopher], Longman Green, London, 1864; page 125.</ref> Karatsuba observed that <math>xy</math> can be computed in only three multiplications, at the cost of a few extra additions. With <math>z_0</math> and <math>z_2</math> as before one can observe that
 
:<math>
:<math>z_1 = (x_1 + x_0)(y_1 + y_0) - z_2 - z_0.</math>
\begin{align}
z_1 &= x_1 y_0 + x_0 y_1 \\
&= x_1 y_0 + x_0 y_1 + x_1 y_1 - x_1 y_1 + x_0 y_0 - x_0 y_0 \\
&= x_1 y_0 + x_0 y_0 + x_0 y_1 + x_1 y_1 - x_1 y_1 - x_0 y_0 \\
&= (x_1 + x_0) y_0 + (x_0 + x_1) y_1 - x_1 y_1 - x_0 y_0 \\
&= (x_1 + x_0) (y_0 + y_1) - x_1 y_1 - x_0 y_0 \\
:<math>z_1 &= (x_1 + x_0) (y_1 + y_0) - z_2 - z_0.</math> \\
\end{align}
</math>
 
===Example===