Quantum complexity theory: Difference between revisions

Content deleted Content added
.hecko (talk | contribs)
Line 124:
 
==== Deutsch-Jozsa algorithm ====
The [[Deutsch-Jozsa algorithm]] is a quantum algorithm designed to solve a toy problem with a smaller query complexity than is possible with a classical algorithm. The toy problem asks whether a function <math>f:\{0,1\}^n\rightarrow\{0,1\}</math> is constant or balanced, those being the only two possibilities.<ref name=":32"/> The only way to evaluate the function <math>f</math> is to consult a [[black box]] or [[Oracle machine|oracle]]. A classical [[deterministic algorithm]] will have to check more than half of the possible inputs to be sure of whether or not the function is constant or balanced. With <math>2^n</math> possible inputs, the query complexity of the most efficient classical deterministic algorithm is <math>2^{n-1}+1</math>.<ref name=":32" /> The Deutsch-Jozsa algorithm takes advantage of quantum parallelism to check all of the elements of the ___domain at once and only needs to query the oracle once, making its query complexity <math>1</math>.<ref name=":32" />
 
==See also==