Content deleted Content added
m Formatting math fractions for better line spacing |
No edit summary Tag: Reverted |
||
Line 3:
[[Isaac Newton]] proved the shell theorem<ref name="Newton philo">{{cite book|last=Newton|first=Isaac|title=Philosophiae Naturalis Principia Mathematica|url=https://archive.org/details/philosophinatur03newtgoog|date=1687|___location=London|pages=Theorem XXXI}}</ref> and stated that:
# A [[sphere|spherically]] [[symmetry|symmetric]] body affects external objects gravitationally as though all of its [[mass]] were concentrated at a [[point mass|point]]
# If the body is a spherically symmetric shell (i.e., a hollow ball), no net [[gravitational force]] is exerted by the shell on any object inside, regardless of the object's ___location within the shell.
A corollary is that inside a solid sphere of constant density, the gravitational force within the object varies linearly with distance from the center, becoming zero by symmetry at the center of [[mass]]. This can be seen as follows: take a point within such a sphere, at a distance <math>r</math> from the center of the sphere. Then you can ignore all of the shells of greater radius, according to the shell theorem (2). But the point can be considered to be external to the remaining sphere of radius r, and according to (1) all of the mass of this sphere can be considered to be concentrated at its centre. The remaining
These results were important to Newton's analysis of planetary motion; they are not immediately obvious, but they can be proven with [[calculus]]. ([[Gauss's law for gravity]] offers an alternative way to state the theorem.)
|