Generalized hypergeometric function: Difference between revisions

Content deleted Content added
Frau Holle (talk | contribs)
Frau Holle (talk | contribs)
Line 343:
===The series <sub>3</sub>''F''<sub>2</sub>===
 
The function
::<math>\operatorname{Li}_2(x) = \sum_{n>0}\,{x^n}{n^{-2}} = x \; {}_3F_2(1,1,1;2,2;x)</math> is the [[dilogarithm]]<ref>{{cite web|last=Candan|first=Cagatay|title=A Simple Proof of F(1,1,1;2,2;x)=dilog(1-x)/x
::<math>\operatorname{Li}_2(x) = \sum_{n>0}\,{x^n}{n^{-2}} = x \; {}_3F_2(1,1,1;2,2;x)</math>
::<math>\operatorname{Li}_2(x) = \sum_{n>0}\,{x^n}{n^{-2}} = x \; {}_3F_2(1,1,1;2,2;x)</math> is the [[dilogarithm]]<ref>{{cite web|last=Candan|first=Cagatay|title=A Simple Proof of F(1,1,1;2,2;x)=dilog(1-x)/x
|url=http://www.eee.metu.edu.tr/~ccandan/pub_dir/hyper_rel.pdf}}</ref>
 
The function
::<math>Q_n(x;a,b,N)= {}_3F_2(-n,-x,n+a+b+1;a+1,-N+1;1)</math> is a [[Hahn polynomial]].
is a [[Hahn polynomial]].
 
===The series <sub>4</sub>''F''<sub>3</sub>===