Partition function (number theory): Difference between revisions

Content deleted Content added
Definition and properties: reduce pointless burden of notation, stop in a more sensible place
Line 135:
|+ Example values of q(n) and associated partitions
|-
! ''n'' || ''q''(''n'') || PartitionsStrict without repeated partspartitions
!Partitions with only odd parts
|-
Line 141:
|() empty partition
|-
| 1 || 1 || (1)
|(1)
|-
| 2 || 1 || (2)
|(1+1)
|-
| 3 || 2 || (1+2), (3)
|(1+1+1), (3)
|-
| 4 || 2 || (1+3), (4)
|(1+1+1+1), (1+3)
|-
| 5 || 3 || (2+3), (1+4), (5)
|(1+1+1+1+1), (1+1+3), (5)
|-
| 6 || 4|| (1+2+3), (2+4), (1+5), (6)
|(1+1+1+1+1+1), (1+1+1+3), (3+3), (1+5)
|-
|7
|5
|(1+2+4), (3+4), (2+5), (1+6), (7)
|(1+1+1+1+1+1+1), (1+1+1+1+3), (1+3+3), (1+1+5), (7)
|-
|8
|6
|(1+3+4), (1+2+5), (3+5), (2+6), (1+7), (8)
|(1+1+1+1+1+1+1+1), (1+1+1+1+1+3), (1+1+3+3), (1+1+1+5), (3+5), (1+7)
|-
|9
|8
|(2+3+4), (1+3+5), (4+5), (1+2+6), (3+6), (2+7), (1+8), (9)
|1+1+1+1+1+1+1+1+1, 1+1+1+1+1+1+3, 1+1+1+3+3, 3+3+3, 1+1+1+1+5, 1+3+5, 1+1+7, 9
|......
|-
|10
|10
|(1+2+3+4), (2+3+5), (1+4+5), (1+3+6), (4+6), (1+2+7), (3+7), (2+8), (1+9), (10)
|......
|}