Content deleted Content added
Citation bot (talk | contribs) Alter: template type. Add: hdl, bibcode, pmid, issue, volume, journal, s2cid, isbn, doi, pages, year. Removed parameters. Some additions/deletions were parameter name changes. | Use this bot. Report bugs. | Suggested by Whoop whoop pull up | #UCB_webform 2108/3669 |
Tags: Reverted extraneous markup |
||
Line 86:
Supervised text summarization is very much like supervised keyphrase extraction. Basically, if you have a collection of documents and human-generated summaries for them, you can learn features of sentences that make them good candidates for inclusion in the summary. Features might include the position in the document (i.e., the first few sentences are probably important), the number of words in the sentence, etc. The main difficulty in supervised extractive summarization is that the known summaries must be manually created by extracting sentences so the sentences in an original training document can be labeled as "in summary" or "not in summary". This is not typically how people create summaries, so simply using journal abstracts or existing summaries is usually not sufficient. The sentences in these summaries do not necessarily match up with sentences in the original text, so it would be difficult to assign labels to examples for training. Note, however, that these natural summaries can still be used for evaluation purposes, since ROUGE-1 evaluation only considers unigrams.
<ref></ref>
Корпусный метод можно рассматривать в качестве эффективного инструмента для развития практических
навыков и умений в овладении иностранным языком, при организации самостоятельной работы студентов. Обзор существующей литературы по проблеме и обращение к данным Британского национального корпуса в целях преподавания теории
и практики английского языка показали, что необходима разработка специальных методических указаний, как для преподавателя, так и для студента, с алгоритмом работы в корпусе, с системой упражнений для более эффективного решения различных лингвистических задач.
==== Adaptive summarization ====
|