Content deleted Content added
Citation bot (talk | contribs) Alter: url. URLs might have been anonymized. Add: pages, issue, s2cid, authors 1-1. Removed parameters. Some additions/deletions were parameter name changes. | Use this bot. Report bugs. | Suggested by Corvus florensis | #UCB_webform 661/3499 |
|||
Line 5:
'''Non-negative matrix factorization''' ('''NMF''' or '''NNMF'''), also '''non-negative matrix approximation'''<ref name="dhillon"/><ref>{{cite report|last1=Tandon|first1=Rashish|last2=Sra|first2=Suvrit |title=Sparse nonnegative matrix approximation: new formulations and algorithms|date=September 13, 2010 |url=https://is.tuebingen.mpg.de/fileadmin/user_upload/files/publications/MPIK-TR-193_%5B0%5D.pdf |id=Technical Report No. 193 |publisher=Max Planck Institute for Biological Cybernetics}}</ref> is a group of [[algorithm]]s in [[multivariate analysis]] and [[linear algebra]] where a [[matrix (mathematics)|matrix]] {{math|'''V'''}} is [[Matrix decomposition|factorized]] into (usually) two matrices {{math|'''W'''}} and {{math|'''H'''}}, with the property that all three matrices have no negative elements. This non-negativity makes the resulting matrices easier to inspect. Also, in applications such as processing of audio spectrograms or muscular activity, non-negativity is inherent to the data being considered. Since the problem is not exactly solvable in general, it is commonly approximated numerically.
NMF finds applications in such fields as [[astronomy]],<ref name=":0">{{Cite journal |last1=Berné |first1=O. |last2=Joblin |first2=C.|author2-link=Christine Joblin |last3=Deville |first3=Y. |last4=Smith |first4=J. D. |last5=Rapacioli |first5=M. |last6=Bernard |first6=J. P. |last7=Thomas |first7=J. |last8=Reach |first8=W. |last9=Abergel |first9=A. |date=2007-07-01 |title=Analysis of the emission of very small dust particles from Spitzer spectro-imagery data using blind signal separation methods |url=https://www.aanda.org/articles/aa/abs/2007/26/aa6282-06/aa6282-06.html |journal=Astronomy & Astrophysics |language=en |volume=469 |issue=2 |pages=575–586 |doi=10.1051/0004-6361:20066282 |issn=0004-6361|doi-access=free }}</ref><ref name="blantonRoweis07"/><ref name="ren18"/> [[computer vision]], [[document clustering]],<ref name="dhillon" /> [[Imputation (statistics)|missing data imputation]],<ref name="ren20">{{Cite journal|arxiv=2001.00563|last1= Ren|first1= Bin |title= Using Data Imputation for Signal Separation in High Contrast Imaging|journal= The Astrophysical Journal|volume= 892|issue= 2|pages= 74|last2= Pueyo|first2= Laurent|last3= Chen | first3 = Christine|last4= Choquet|first4= Elodie |last5= Debes|first5= John H|last6= Duechene |first6= Gaspard|last7= Menard|first7=Francois|last8=Perrin|first8=Marshall D.|year= 2020|doi= 10.3847/1538-4357/ab7024 | bibcode = 2020ApJ...892...74R |s2cid= 209531731}}</ref> [[chemometrics]], [[audio signal processing]], [[recommender system|recommender systems]],<ref name="gemulla">{{cite conference |author=Rainer Gemulla |author2=Erik Nijkamp |author3=Peter J. Haas|author3-link= Peter J. Haas (computer scientist)|author4=Yannis Sismanis |title=Large-scale matrix factorization with distributed stochastic gradient descent |conference=Proc. ACM SIGKDD Int'l Conf. on Knowledge discovery and data mining |url=<!-- http://www.mpi-inf.mpg.de/~rgemulla/publications/rj10481rev.pdf --><!--removing dead link--> |year=2011 |pages=69–77 }}</ref><ref>{{cite conference |author=Yang Bao|title=TopicMF: Simultaneously Exploiting Ratings and Reviews for Recommendation |conference=AAAI |url=http://www.aaai.org/ocs/index.php/AAAI/AAAI14/paper/view/8273 |year=2014 |display-authors=etal}}</ref> and [[bioinformatics]].<ref>{{cite journal |author=Ben Murrell|title=Non-Negative Matrix Factorization for Learning Alignment-Specific Models of Protein Evolution |journal=PLOS ONE |volume=6 |issue=12 |year=2011 |pages=e28898|display-authors=etal|doi=10.1371/journal.pone.0028898 |pmid=22216138 |pmc=3245233 |bibcode=2011PLoSO...628898M |doi-access=free }}</ref>
== History ==
|