Fixed-field alternating gradient accelerator: Difference between revisions

Content deleted Content added
Citation bot (talk | contribs)
Alter: journal. Add: s2cid. | Use this bot. Report bugs. | Suggested by Abductive | #UCB_webform 3689/3850
Line 5:
| first1 = A.G.
| title = Brief History of FFA Accelerators
| journal = BNL-75635-2006-CPCp
| date = Mar 2006
| url = http://www.bnl.gov/isd/documents/31130.pdf
Line 42:
| inventor = [[Keith Symon|Keith R. Symon]]
| title = [http://www.google.com/patents?id=ZGZVAAAAEBAJ Imparting Energy to Charged Particles]
}}</ref> Ohkawa worked with Symon and the [[Midwestern Universities Research Association|MURA]] team for several years starting in 1955.<ref>{{Cite journal | last1 = Jones | first1 = L. W. | author-link1 = Lawrence W. Jones| last2 = Sessler | first2 = A. M. | last3 = Symon | first3 = K. R. | doi = 10.1126/science.316.5831.1567 | title = A Brief History of the FFAG Accelerator | journal = [[Science (journal)|Science]] | volume = 316 | issue = 5831 | pages = 1567 | year = 2007 | pmid = 17569845| s2cid = 5201822 }}</ref>
 
[[Donald Kerst]], working with Symon, filed a patent for the spiral-sector FFA accelerator at around the same time as Symon's Radial Sector patent.<ref>{{US patent reference
Line 111:
 
===Continuing development===
[[File:aspun.jpg|thumb|ASPUN ring (scaling FFA). The first ANL design ASPUN was a spiral machine designed to increase momentum threefold with a modest spiral as compared with the MURA machines.<ref>{{cite journal|title=ASPUN, Design for an Argonne Super Intense Pulsed Neutron Source|last1=Khoe|first1=T.K.|last2=Kustom|first2=R.L.|volume=30|issue=4|pages=2086–2088|journal=IEEE Transactions on Nuclear Science|date=August 1983|doi=10.1109/tns.1983.4332724|bibcode=1983ITNS...30.2086K|url=https://digital.library.unt.edu/ark:/67531/metadc1108437/|issn=0891-9356|citeseerx=10.1.1.609.1789|s2cid=31021790 }}</ref>]]
[[File:PhilM3-Gode.pdf|thumb|Example of a 16-cell superconducting FFA. Energy: 1.6 GeV, average radius 26 m.]]
In the early 1980s, it was suggested by Phil Meads that an FFA was suitable and advantageous as a proton accelerator for an [[Spallation#Production of neutrons at a spallation neutron source|intense spallation neutron source]],<ref>{{cite journal|title=An FFA Compressor and Accelerator Ring Studied for the German Spallation Neutron Source|last1=Meads|first1=P.|last2=Wüstefeld|first2=G.|volume=32|issue=5 (part II)|pages=2697–2699|journal=IEEE Transactions on Nuclear Science|date=October 1985|bibcode=1985ITNS...32.2697M|doi=10.1109/TNS.1985.4334153|s2cid=41784649 }}</ref> starting off projects like the Argonne Tandem Linear Accelerator at [[Argonne National Laboratory]]<ref>{{cite web |title = Argonne History: Understanding the Physical Universe |publisher = Argonne National Laboratory |url = http://www.anl.gov/Science_and_Technology/History/Anniversary_Frontiers/physhist.html#neutrino|url-status=dead|archive-url=https://web.archive.org/web/20040909173546/http://www.anl.gov/Science_and_Technology/History/Anniversary_Frontiers/physhist.html|archive-date=9 September 2004}}</ref> and the Cooler [[Synchrotron]] at [[Jülich Research Centre]].<ref>{{cite web|url=http://www.fz-juelich.de/ikp/EN/Forschung/Beschleuniger/_doc/COSY.html|title=COSY - Fundamental research in the field of hadron, particle, and nuclear physics|publisher= Institute for Nuclear Physics|access-date=12 February 2017}}</ref>
 
Conferences exploring this possibility were held at Jülich Research Centre, starting from 1984.<ref>{{cite web|url=http://jdsweb.jinr.ru/record/38097|title= 2nd Jülich Seminar on Fixed Field Alternating Gradient Accelerators (FFA)|___location=[[Jülich]]|last=Wüstefeld|first=G.|date=14 May 1984|access-date=12 February 2017}}</ref> There have also been numerous annual [[Academic conference|workshops]] focusing on FFA accelerators<ref>{{cite journal|url=http://accelconf.web.cern.ch/AccelConf/p05/papers/foac003.pdf|title=New Concepts in FFAG Design for Secondary Beam Facilities and Other Applications|journal=21St Particle Accelerator Conference (Pac 05)|pages=261|first=M.K.|last=Craddock|year=2005|access-date=12 February 2012|bibcode=2005pac..conf..261C}}</ref> at [[CERN]], [[The High Energy Accelerator Research Organization|KEK]], [[Brookhaven National Laboratory|BNL]], [[TRIUMF]], [[Fermilab]], and the Reactor Research Institute at [[Kyoto University]].<ref>{{cite web|url=https://www.bnl.gov/ffag14/pastWorkshops.php|title=Previous Workshops|publisher=[[Brookhaven National Laboratory|BNL]]|access-date=12 February 2017}}</ref> In 1992, the European Particle Accelerator Conference at CERN was about FFA accelerators.<ref name=FFAGopts>{{Cite journal
Line 141:
| bibcode = 1985ITNS...32.2697M
| doi = 10.1109/TNS.1985.4334153
| s2cid = 41784649
}}</ref> In 1994, a coil shape which provided the required field with no iron was derived.<ref>{{cite journal|title=Superconducting magnet design for Fixed-Field Alternating-Gradient (FFAG) Accelerator|journal=IEEE Transactions on Magnetics|volume=30|issue=4|pages=2620–2623|date=July 1994|first1=M.|last1= Abdelsalam|first2= R.|last2= Kustom|doi=10.1109/20.305816|bibcode=1994ITM....30.2620A|url=https://digital.library.unt.edu/ark:/67531/metadc1404050/}}</ref> This magnet design was continued by S. Martin ''et al.'' from [[Jülich]].<ref name=FFAGopts/><ref>{{cite journal|author=S. A. Martin|display-authors=etal|title=FFAG Studies for a 5 MW Neutron Source|journal=International Collaboration on Advanced Neutron Sources (ICANS)|date=24 May 1993}}</ref>