Submodular set function: Difference between revisions

Content deleted Content added
Citations: Update Reference
Citation bot (talk | contribs)
Alter: journal, pages. Add: isbn, s2cid, doi, volume. Formatted dashes. | Use this bot. Report bugs. | Suggested by Mako001 | #UCB_webform 1523/3850
Line 115:
<ref name="NB">M. Narasimhan and J. Bilmes, A submodular-supermodular procedure with applications to discriminative structure learning, In Proc. UAI (2005).</ref>
<ref name="FMV">[[Uriel Feige|U. Feige]], V. Mirrokni and J. Vondrák, Maximizing non-monotone submodular functions, Proc. of 48th FOCS (2007), pp. 461–471.</ref>
<ref name="NVF">{{cite journal|first1=George |last1=Nemhauser|author-link1=George Nemhauser|first2=L. A. |last2=Wolsey|first3=M. L. |last3=Fisher|title=An analysis of approximations for maximizing submodular set functions I|journal=Mathematical Programming |issue=14 |year=1978|volume=14 |pages=265–294|doi=10.1007/BF01588971 |s2cid=206800425 }}</ref>
<ref name="CCPV">G. Calinescu, C. Chekuri, M. Pál and J. Vondrák, Maximizing a submodular set function subject to a matroid constraint, SIAM J. Comp. 40:6 (2011), 1740-1766.</ref>
<ref name="BFNS">N. Buchbinder, M. Feldman, J. Naor and R. Schwartz, A tight linear time (1/2)-approximation for unconstrained submodular maximization, Proc. of 53rd FOCS (2012), pp. 649-658.</ref>
Line 127:
<ref name="KG1">A. Krause and C. Guestrin, Near-optimal nonmyopic value of information in graphical models, UAI-2005.</ref>
<ref name="FNS">M. Feldman, J. Naor and R. Schwartz, A unified continuous greedy algorithm for submodular maximization, Proc. of 52nd FOCS (2011).</ref>
<ref name="L">{{cite journal |author-link1=László Lovász |last1=Lovász |first1=L. |date=1983 |title=Submodular functions and convexity |url= |journal=Mathematical Programming Thethe State of the Art |pages=235-257235–257 |doi=10.1007/978-3-642-68874-4_10 |isbn=978-3-642-68876-8 }}</ref>
<ref name="BF">{{cite encyclopedia |last1=Buchbinder |first1=Niv |last2=Feldman |first2=Moran |title=Submodular Functions Maximization Problems |encyclopedia= Handbook of Approximation Algorithms and Metaheuristics, Second Edition: Methodologies and Traditional Applications |year=2018 |editor1-last=Gonzalez |editor1-first=Teofilo F. |publisher=Chapman and Hall/CRC |doi=10.1201/9781351236423 |isbn=9781351236423 |url=https://www.taylorfrancis.com/chapters/edit/10.1201/9781351236423-42/submodular-functions-maximization-problems-niv-buchbinder-moran-feldman}}</ref>
 
<ref name="JV2">{{Cite web|last=Vondrák|first=Jan|title=Polyhedral techniques in combinatorial optimization: Lecture 17|url=https://theory.stanford.edu/~jvondrak/CS369P/lec17.pdf}}</ref>