Content deleted Content added
Aaronfranke (talk | contribs) Fix prime symbol instead of transpose symbol for transposed matrix |
add Gallica link to Autonne's treatise |
||
Line 83:
=== Complex symmetric matrices {{anchor|Complex}}===
A complex symmetric matrix can be 'diagonalized' using a [[unitary matrix]]: thus if <math>A</math> is a complex symmetric matrix, there is a unitary matrix <math>U</math> such that <math>U A U^{\mathrm T}</math> is a real diagonal matrix with non-negative entries. This result is referred to as the '''Autonne–Takagi factorization'''. It was originally proved by [[Léon Autonne]] (1915) and [[Teiji Takagi]] (1925) and rediscovered with different proofs by several other mathematicians.<ref>{{cite book|first1=R.A.|last1=Horn|first2=C.R.|last2=Johnson|title=Matrix analysis |year=2013 | edition=2nd | publisher = Cambridge University Press | mr = 2978290|at=pp. 263, 278}}</ref><ref>See:
*{{citation|first=L.|last= Autonne|title= Sur les matrices hypohermitiennes et sur les matrices unitaires|journal= Ann. Univ. Lyon|volume= 38|year=1915|pages= 1–77|url=https://gallica.bnf.fr/ark:/12148/bpt6k69553b}}
*{{citation|first=T.|last= Takagi|title= On an algebraic problem related to an analytic theorem of Carathéodory and Fejér and on an allied theorem of Landau|journal= Jpn. J. Math.|volume= 1 |year=1925|pages= 83–93|doi= 10.4099/jjm1924.1.0_83|doi-access= free}}
*{{citation|title=Symplectic Geometry|first=Carl Ludwig|last= Siegel|journal= American Journal of Mathematics|volume= 65|issue=1 |year=1943|pages=1–86|jstor= 2371774|doi=10.2307/2371774|id=Lemma 1, page 12}}
|