Quantum neural network: Difference between revisions

Content deleted Content added
m Quantum networks: task, replaced: NPJ → npj (2)
Citation bot (talk | contribs)
Alter: journal, url. URLs might have been anonymized. | Use this bot. Report bugs. | Suggested by AManWithNoPlan | #UCB_CommandLine
Line 15:
=== Quantum networks ===
 
At a larger scale, researchers have attempted to generalize neural networks to the quantum setting. One way of constructing a quantum neuron is to first generalise classical neurons and then generalising them further to make unitary gates. Interactions between neurons can be controlled quantumly, with [[unitary operator|unitary]] [[quantum logic gate|gates]], or classically, via [[measurement in quantum mechanics|measurement]] of the network states. This high-level theoretical technique can be applied broadly, by taking different types of networks and different implementations of quantum neurons, such as [[Integrated quantum photonics|photonically]] implemented neurons<ref name="WanDKGK16">{{cite journal|last1=Wan|first1=Kwok-Ho|last2=Dahlsten|first2=Oscar|last3=Kristjansson|first3=Hler|last4=Gardner|first4=Robert|last5=Kim|first5=Myungshik|year=2017|title=Quantum generalisation of feedforward neural networks|journal=npjNPJ Quantum Information|volume=3|pages=36|arxiv=1612.01045|bibcode=2017npjQI...3...36W|doi=10.1038/s41534-017-0032-4|s2cid=51685660}}</ref><ref>{{cite journal |first1=A. |last1=Narayanan |first2=T. |last2=Menneer |title=Quantum artificial neural network architectures and components |journal=Information Sciences |volume=128 |issue= 3–4|pages=231–255 |year=2000 |doi=10.1016/S0020-0255(00)00055-4 }}</ref> and [[quantum reservoir processor]] (quantum version of [[reservoir computing]]).<ref>{{cite journal |last1=Ghosh |first1=S. |last2=Opala |first2=A. |last3=Matuszewski |first3=M. |last4=Paterek |first4=P. |last5=Liew |first5=T. C. H. |doi=10.1038/s41534-019-0149-8 |title=Quantum reservoir processing |journal=npjNPJ Quantum Information |volume=5 |pages=35 |year=2019 |arxiv=1811.10335 |bibcode=2019npjQI...5...35G |s2cid=119197635 }}</ref> Most learning algorithms follow the classical model of training an artificial neural network to learn the input-output function of a given [[training set]] and use classical feedback loops to update parameters of the quantum system until they converge to an optimal configuration. Learning as a parameter optimisation problem has also been approached by adiabatic models of quantum computing.<ref>{{cite journal |first1=H. |last1=Neven |display-authors=1 |first2=Vasil S. |last2=Denchev |first3=Geordie |last3=Rose |first4=William G. |last4=Macready |arxiv=0811.0416 |title=Training a Binary Classifier with the Quantum Adiabatic Algorithm |year=2008 }}</ref>
 
Quantum neural networks can be applied to algorithmic design: given [[qubits]] with tunable mutual interactions, one can attempt to learn interactions following the classical [[backpropagation]] rule from a [[training set]] of desired input-output relations, taken to be the desired output algorithm's behavior.<ref>{{cite journal |first1=J. |last1=Bang |display-authors=1 |first2=Junghee |last2=Ryu |first3=Seokwon |last3=Yoo |first4=Marcin |last4=Pawłowski |first5=Jinhyoung |last5=Lee |doi=10.1088/1367-2630/16/7/073017 |title=A strategy for quantum algorithm design assisted by machine learning |journal=New Journal of Physics |volume=16 |issue= 7|pages=073017 |year=2014 |arxiv=1301.1132 |bibcode=2014NJPh...16g3017B |s2cid=55377982 }}</ref><ref>{{cite journal |first1=E. C. |last1=Behrman |first2=J. E. |last2=Steck |first3=P. |last3=Kumar |first4=K. A. |last4=Walsh |arxiv=0808.1558 |title=Quantum Algorithm design using dynamic learning |journal=Quantum Information and Computation |volume=8 |issue=1–2 |pages=12–29 |year=2008 |doi=10.26421/QIC8.1-2-2 |s2cid=18587557 }}</ref> The quantum network thus ‘learns’ an algorithm.
Line 28:
 
== Training ==
Quantum Neural Networks can be theoretically trained similarly to training classical/[[artificial neural network]]s. A key difference lies in communication between the layers of a neural networks. For classical neural networks, at the end of a given operation, the current [[perceptron]] copies its output to the next layer of perceptron(s) in the network. However, in a quantum neural network, where each perceptron is a qubit, this would violate the [[no-cloning theorem]].<ref name=":0" /><ref>{{Cite book|last1=Nielsen|first1=Michael A|url=https://www.worldcat.org/title/quantum-computation-and-quantum-information/oclc/665137861|title=Quantum computation and quantum information|last2=Chuang|first2=Isaac L|date=2010|publisher=Cambridge University Press|isbn=978-1-107-00217-3|___location=Cambridge; New York|language=en|oclc=665137861}}</ref> A proposed generalized solution to this is to replace the classical [[Fan-out (software)|fan-out]] method with an arbitrary [[Unitary matrix|unitary]] that spreads out, but does not copy, the output of one qubit to the next layer of qubits. Using this fan-out Unitary (<math>U_f</math>) with a dummy state qubit in a known state (Ex. <math>|0\rangle</math> in the [[Qubit|computational basis]]), also known as an [[Ancilla bit]], the information from the qubit can be transferred to the next layer of qubits.<ref name="WanDKGK16" /> This process adheres to the quantum operation requirement of [[Reversible computing|reversibility]].<ref name="WanDKGK16" /><ref name=":1">{{Cite journal|last=Feynman|first=Richard P.|date=1986-06-01|title=Quantum mechanical computers|url=https://doi.org/10.1007/BF01886518|journal=Foundations of Physics|language=en|volume=16|issue=6|pages=507–531|doi=10.1007/BF01886518|bibcode=1986FoPh...16..507F|s2cid=122076550|issn=1572-9516}}</ref>
 
Using this quantum feed-forward network, deep neural networks can be executed and trained efficiently. A deep neural network is essentially a network with many hidden-layers, as seen in the sample model neural network above. Since the Quantum neural network being discussed utilizes fan-out Unitary operators, and each operator only acts on its respective input, only two layers are used at any given time.<ref name=":0" /> In other words, no Unitary operator is acting on the entire network at any given time, meaning the number of qubits required for a given step depends on the number of inputs in a given layer. Since Quantum Computers are notorious for their ability to run multiple iterations in a short period of time, the efficiency of a quantum neural network is solely dependent on the number of qubits in any given layer, and not on the depth of the network.<ref name=":1" />