Content deleted Content added
mNo edit summary |
mNo edit summary |
||
Line 1:
{{Short description|
{{Refimprove|date=June 2021}}
In [[multilinear algebra]], a '''tensor decomposition''' <ref>{{Cite journal |last=Sidiropoulos |first=Nicholas D. |last2=De Lathauwer |first2=Lieven |last3=Fu |first3=Xiao |last4=Huang |first4=Kejun |last5=Papalexakis |first5=Evangelos E. |last6=Faloutsos |first6=Christos |date=2017-07-01 |title=Tensor Decomposition for Signal Processing and Machine Learning |url=http://ieeexplore.ieee.org/document/7891546/ |journal=IEEE Transactions on Signal Processing |volume=65 |issue=13 |pages=3551–3582 |doi=10.1109/TSP.2017.2690524 |issn=1053-587X}}</ref> <ref>{{Cite journal |last=Kolda |first=Tamara G. |last2=Bader |first2=Brett W. |date=2009-08-06 |title=Tensor Decompositions and Applications |url=http://epubs.siam.org/doi/10.1137/07070111X |journal=SIAM Review |language=en |volume=51 |issue=3 |pages=455–500 |doi=10.1137/07070111X |issn=0036-1445}}</ref> is any scheme for expressing a [[tensor]] as a sequence of elementary operations acting on other, often simpler tensors. Many tensor decompositions generalize some [[matrix decomposition]]s.<ref>{{Cite journal|date=2013-05-01|title=General tensor decomposition, moment matrices and applications|url=https://www.sciencedirect.com/science/article/pii/S0747717112001290|journal=Journal of Symbolic Computation|language=en|volume=52|pages=51–71|doi=10.1016/j.jsc.2012.05.012|issn=0747-7171|arxiv=1105.1229|last1=Bernardi |first1=A. |last2=Brachat |first2=J. |last3=Comon |first3=P. |last4=Mourrain |first4=B. |s2cid=14181289 }}</ref>
|