Content deleted Content added
m Open access bot: doi added to citation with #oabot. |
Maxeto0910 (talk | contribs) m uniformly Tags: Visual edit Mobile edit Mobile web edit Advanced mobile edit |
||
Line 83:
==Application==
Multimodal deep Boltzmann machines are successfully used in classification and missing data retrieval. The classification accuracy of multimodal deep Boltzmann machine outperforms [[support vector machine]]s, [[latent Dirichlet allocation]] and [[deep belief network]], when models are tested on data with both image-text modalities or with single modality.{{Citation needed|date=November 2022}}
Multimodal deep learning is used for [[cancer screening]] – at least one system under development [[Data integration#Medicine and Life Sciences|integrates]] such different types of data.<ref>{{cite news |last1=Quach |first1=Katyanna |title=Harvard boffins build multimodal AI system to predict cancer |url=https://www.theregister.com/2022/08/09/ai_cancer_multimodal/ |access-date=16 September 2022 |work=The Register |language=en}}</ref><ref>{{cite journal |last1=Chen |first1=Richard J. |last2=Lu |first2=Ming Y. |last3=Williamson |first3=Drew F. K. |last4=Chen |first4=Tiffany Y. |last5=Lipkova |first5=Jana |last6=Noor |first6=Zahra |last7=Shaban |first7=Muhammad |last8=Shady |first8=Maha |last9=Williams |first9=Mane |last10=Joo |first10=Bumjin |last11=Mahmood |first11=Faisal |title=Pan-cancer integrative histology-genomic analysis via multimodal deep learning |journal=Cancer Cell |date=8 August 2022 |volume=40 |issue=8 |pages=865–878.e6 |doi=10.1016/j.ccell.2022.07.004 |pmid=35944502 |s2cid=251456162 |language=English |issn=1535-6108|doi-access=free }}
|