Content deleted Content added
→See also: Added "Variational autoencoder ". Could eventually be moved into the main section. Tags: Mobile edit Mobile web edit Advanced mobile edit |
Maxeto0910 (talk | contribs) m no sentence Tags: Visual edit Mobile edit Mobile web edit Advanced mobile edit |
||
Line 76:
By the generalized Pythagorean theorem of [[Bregman divergence]], of which KL-divergence is a special case, it can be shown that:<ref name=Tran2018>{{cite arXiv|title=Copula Variational Bayes inference via information geometry|first1=Viet Hung|last1=Tran|year=2018|eprint=1803.10998|class=cs.IT}}</ref><ref name="Martin2014"/>
[[File:Bregman_divergence_Pythagorean.png|right|300px|thumb|Generalized Pythagorean theorem for [[Bregman divergence]]<ref name="Martin2014">{{cite journal |last1=Adamčík |first1=Martin |title=The Information Geometry of Bregman Divergences and Some Applications in Multi-Expert Reasoning |journal=Entropy |date=2014 |volume=16 |issue=12 |pages=6338–6381|bibcode=2014Entrp..16.6338A |doi=10.3390/e16126338 |doi-access=free }}</ref>]]
:<math>
D_{\mathrm{KL}}(Q\parallel P) \geq D_{\mathrm{KL}}(Q\parallel Q^{*}) + D_{\mathrm{KL}}(Q^{*}\parallel P), \forall Q^{*} \in\mathcal{C}
|