Content deleted Content added
No edit summary |
No edit summary |
||
Line 1:
{{Short description|Process in algebra}}
{{Refimprove|date=June 2021}}
In [[multilinear algebra]], a '''tensor decomposition'''
[[Tensors]] are generalizations of matrices to higher dimensions and can consequently be treated as multidimensional fields <ref name="VasilescuDSP"/><ref>{{Cite journal |last=Rabanser |first=Stephan |last2=Shchur |first2=Oleksandr |last3=Günnemann |first3=Stephan |date=2017 |title=Introduction to Tensor Decompositions and their Applications in Machine Learning |url=https://arxiv.org/abs/1711.10781 |doi=10.48550/ARXIV.1711.10781}}</ref>.
The main tensor decompositions are:
* [[Tensor rank decomposition]]<ref>{{Cite journal |last=Papalexakis |first=Evangelos E. |date=2016-06-30 |title=Automatic Unsupervised Tensor Mining with Quality Assessment |url=https://epubs.siam.org/doi/10.1137/1.9781611974348.80 |journal=Proceedings of the 2016 SIAM International Conference on Data Mining |language=en |publisher=Society for Industrial and Applied Mathematics |pages=711–719 |doi=10.1137/1.9781611974348.80 |isbn=978-1-61197-434-8}}</ref>;
* [[Higher-order singular value decomposition]]
|first2=D.|last2=Terzopoulos
|url=http://www.cs.toronto.edu/~maov/tensorfaces/Springer%20ECCV%202002_files/eccv02proceeding_23500447.pdf
|title=Multilinear Analysis of Image Ensembles: TensorFaces
|series=Lecture Notes in Computer Science; (Presented at Proc. 7th European Conference on Computer Vision (ECCV'02), Copenhagen, Denmark)
|publisher=Springer, Berlin, Heidelberg
|volume=2350
|doi=10.1007/3-540-47969-4_30
|isbn=978-3-540-43745-1
|year=2002
}}</ref>;
* [[Tucker decomposition]];
* [[matrix product state]]s, and operators or tensor trains;
* [[Online Tensor Decompositions]]<ref>{{
* [[hierarchical Tucker decomposition]]<ref name=Vasilescu2019>{{Citation |first1=M.A.O.|last1=Vasilescu|first2=E.|last2=Kim|date=2019|title=Compositional Hierarchical Tensor Factorization: Representing Hierarchical Intrinsic and Extrinsic Causal Factors|work=In The 25th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD’19): Tensor Methods for Emerging Data Science Challenges|url=https://arxiv.org/pdf/1911.04180.pdf}}</ref>; and
* [[block term decomposition]]<ref>{{Cite journal |last=De Lathauwer
==Preliminary Definitions and Notation==
This section introduces basic notations and operations that are widely used in the field. A summary of symbols that we use through the whole thesis can be found in the table.
Line 27 ⟶ 37:
|}
==Introduction==
A multi-
|