Content deleted Content added
→Further improvements: WP:OR, and incorrect. The algorithm presented above already works in a number field. |
cite journal version, correct year; rm youtube |
||
Line 163:
===Russian peasant multiplication===
{{Main|Peasant multiplication}}
The binary method is also known as peasant multiplication, because it has been widely used by people who are classified as peasants and thus have not memorized the [[multiplication table]]s required for long multiplication.<ref>{{Cite web|url=https://www.cut-the-knot.org/Curriculum/Algebra/PeasantMultiplication.shtml|title=Peasant Multiplication|author-link=Alexander Bogomolny|last=Bogomolny|first= Alexander |website=www.cut-the-knot.org|access-date=2017-11-04}}</ref>{{failed verification|date=March 2020}} The algorithm was in use in ancient Egypt.<ref>{{Cite book |first=D. |last=Wells | author-link=David G. Wells | year=1987 |page=44 |title=The Penguin Dictionary of Curious and Interesting Numbers |publisher=Penguin Books |isbn=978-0-14-008029-2
====Description====
Line 304:
In 2007 the [[asymptotic complexity]] of integer multiplication was improved by the Swiss mathematician [[Martin Fürer]] of Pennsylvania State University to ''n'' log(''n'') 2<sup>Θ([[iterated logarithm|log<sup>*</sup>]](''n''))</sup> using Fourier transforms over complex numbers.<ref name="fürer_1">{{cite book |first=M. |last=Fürer |chapter=Faster Integer Multiplication |chapter-url=https://ivv5hpp.uni-muenster.de/u/cl/WS2007-8/mult.pdf |doi=10.1145/1250790.1250800 |title=Proceedings of the thirty-ninth annual ACM symposium on Theory of computing, June 11–13, 2007, San Diego, California, USA |publisher= |___location= |date=2007 |isbn=978-1-59593-631-8 |pages=57–66 |s2cid=8437794 |url=}}</ref> Anindya De, Chandan Saha, Piyush Kurur and Ramprasad Saptharishi gave a similar algorithm using [[modular arithmetic]] in 2008 achieving the same running time.<ref>{{cite book |first1=A. |last1=De |first2=C. |last2=Saha |first3=P. |last3=Kurur |first4=R. |last4=Saptharishi |chapter=Fast integer multiplication using modular arithmetic |chapter-url= |doi=10.1145/1374376.1374447 |title=Proceedings of the 40th annual ACM Symposium on Theory of Computing (STOC) |publisher= |___location= |date=2008 |isbn=978-1-60558-047-0 |pages=499–506 |url= |arxiv=0801.1416|s2cid=3264828 }}</ref> In context of the above material, what these latter authors have achieved is to find ''N'' much less than 2<sup>3''k''</sup> + 1, so that ''Z''/''NZ'' has a (2''m'')th root of unity. This speeds up computation and reduces the time complexity. However, these latter algorithms are only faster than Schönhage–Strassen for impractically large inputs.
In 2014, Harvey, [[Joris van der Hoeven]] and Lecerf<ref>{{cite journal
In 2015, Harvey, [[Joris van der Hoeven]] and Lecerf<ref>{{cite arXiv |first1=D. |last1=Harvey |first2=J. |last2=van der Hoeven |first3=G. |last3=Lecerf |year=2015 |title=Even faster integer multiplication |class=cs.CC |eprint=1407.3360}}</ref> gave a new algorithm that achieves a running time of <math>O(n\log n \cdot 2^{3\log^* n})</math>, making explicit the implied constant in the <math>O(\log^* n)</math> exponent. They also proposed a variant of their algorithm which achieves <math>O(n\log n \cdot 2^{2\log^* n})</math> but whose validity relies on standard conjectures about the distribution of [[Mersenne prime]]s. In 2016, Covanov and Thomé proposed an integer multiplication algorithm based on a generalization of [[Fermat primes]] that conjecturally achieves a complexity bound of <math>O(n\log n \cdot 2^{2\log^* n})</math>. This matches the 2015 conditional result of Harvey, van der Hoeven, and Lecerf but uses a different algorithm and relies on a different conjecture.<ref>{{cite journal |first1=Svyatoslav |last1=Covanov |first2=Emmanuel |last2=Thomé |title=Fast Integer Multiplication Using Generalized Fermat Primes |journal=[[Mathematics of Computation|Math. Comp.]] |volume=88 |year=2019 |issue=317 |pages=1449–1477 |doi=10.1090/mcom/3367 |arxiv=1502.02800 |s2cid=67790860 }}</ref> In 2018, Harvey and van der Hoeven used an approach based on the existence of short lattice vectors guaranteed by [[Minkowski's theorem]] to prove an unconditional complexity bound of <math>O(n\log n \cdot 2^{2\log^* n})</math>.<ref>{{cite journal |first1=D. |last1=Harvey |first2=J. |last2=van der Hoeven |year=2019 |title=Faster integer multiplication using short lattice vectors |journal=The Open Book Series |volume=2 |pages=293–310 |doi=10.2140/obs.2019.2.293 |arxiv=1802.07932|s2cid=3464567 }}</ref>▼
| last1 = Harvey | first1 = David
| last2 = van der Hoeven | first2 = Joris
| last3 = Lecerf | first3 = Grégoire
| arxiv = 1407.3360
| doi = 10.1016/j.jco.2016.03.001
| journal = Journal of Complexity
| mr = 3530637
| pages = 1–30
| title = Even faster integer multiplication
| volume = 36
▲
In March 2019, [[David Harvey (mathematician)|David Harvey]] and [[Joris van der Hoeven]] announced their discovery of an {{nowrap|''O''(''n'' log ''n'')}} multiplication algorithm.<ref>{{Cite magazine|url=https://www.quantamagazine.org/mathematicians-discover-the-perfect-way-to-multiply-20190411/|title=Mathematicians Discover the Perfect Way to Multiply|last=Hartnett|first=Kevin|magazine=Quanta Magazine|date=11 April 2019|access-date=2019-05-03}}</ref> It was published in the ''[[Annals of Mathematics]]'' in 2021.<ref>{{cite journal | last1 = Harvey | first1 = David | last2 = van der Hoeven | first2 = Joris | author2-link = Joris van der Hoeven | doi = 10.4007/annals.2021.193.2.4 | issue = 2 | journal = [[Annals of Mathematics]] | mr = 4224716 | pages = 563–617 | series = Second Series | title = Integer multiplication in time <math>O(n \log n)</math> | volume = 193 | year = 2021| s2cid = 109934776 | url = https://hal.archives-ouvertes.fr/hal-02070778v2/file/nlogn.pdf }}</ref> Because Schönhage and Strassen predicted that ''n'' log(''n'') is the ‘best possible’ result Harvey said: “...our work is expected to be the end of the road for this problem, although we don't know yet how to prove this rigorously.”<ref>{{cite news |last1=Gilbert |first1=Lachlan |title=Maths whiz solves 48-year-old multiplication problem |url=https://newsroom.unsw.edu.au/news/science-tech/maths-whiz-solves-48-year-old-multiplication-problem |access-date=18 April 2019 |publisher=UNSW |date=4 April 2019}}</ref>
|