Content deleted Content added
m Open access bot: doi added to citation with #oabot. |
m clean up, typo(s) fixed: a edge → an edge |
||
Line 1:
{{good article}}▼
{{Short description|Shortest network connecting points}}
▲{{good article}}
[[Image:Euclidean minimum spanning tree.svg|thumb|300px|right|Euclidean minimum spanning tree of 25 random points in the plane]]
Line 8:
==Definition and related problems==
A Euclidean minimum spanning tree, for a set of <math>n</math> points in the [[Euclidean plane]] or [[Euclidean space]], is a system of [[line segment]]s, having only the given points as their endpoints, whose union includes all of the points in a [[connected set]], and which has the minimum possible total length of any such system. Such a network cannot contain a [[polygon
Publications on the Euclidean minimum spanning tree commonly abbreviate it as "EMST".{{r|aesw|mrg}} They may also be called "geometric minimum spanning trees",{{r|clarkson|monsur}} but that term may be used more generally for geometric spaces with non-Euclidean distances, such as [[Lp space|{{math|''L''<sup>''p''</sup>}} spaces]].{{r|nzz}} When the context of Euclidean point sets is clear, they may be called simply "minimum spanning trees".{{r|frakau|king|kln}}
Line 30:
For any edge <math>uv</math> of any Euclidean minimum spanning tree, the [[Lens (geometry)|lens]] (or [[vesica piscis]]) formed by intersecting the two circles with <math>uv</math> as their radii cannot have any other given vertex <math>w</math> in its interior. Put another way, if any tree has an edge <math>uv</math> whose lens contains a third point <math>w</math>, then it is not of minimum length. For, by the geometry of the two circles, <math>w</math> would be closer to both <math>u</math> and <math>v</math> than they are to each other. If edge <math>uv</math> were removed from the tree, <math>w</math> would remain connected to one of <math>u</math> and <math>v</math>, but not the other. Replacing the removed edge <math>uv</math> by <math>uw</math> or <math>vw</math> (whichever of these two edges reconnects <math>w</math> to the vertex from which it was disconnected) would produce a shorter tree.{{r|gilpol}}
For any edge <math>uv</math> of any Euclidean minimum spanning tree, the [[rhombus]] with angles of 60° and 120°, having <math>uv</math> as its long diagonal, is disjoint from the rhombi formed analogously by all other edges. Two edges sharing an endpoint cannot have overlapping rhombi, because that would imply
===Supergraphs===
|