Selection algorithm: Difference between revisions

Content deleted Content added
Problem statement: explicit statement of model of computation should be in texts but that's not where I found it
pseudorandom
Line 25:
*If the pivot were exactly at the median of the input, then each recursive call would have at most half as many values as the previous call, and the total times would add in a [[geometric series]] {{nowrap|to <math>O(n)</math>.}} However, finding the median is itself a selection problem, on the entire original input. Trying to find it by a recursive call to a selection algorithm would lead to an infinite recursion, because the problem size would not decrease in each {{nowrap|call.{{r|kletar}}}}
*[[Quickselect]] chooses the pivot uniformly at random from the input values. It can be described as a [[prune and search]] algorithm,{{r|gootam}} a variant of [[quicksort]], with the same pivoting strategy, but where quicksort makes two recursive calls to sort the two subcollections <math>L</math> {{nowrap|and <math>R</math>,}} quickselect only makes one of these two calls. Its [[expected time]] {{nowrap|is <math>O(n)</math>.{{r|clrs|kletar|gootam}}}}
*The [[Floyd–Rivest algorithm]], a variation of quickselect, chooses a pivot by randomly sampling a subset of <math>r</math> data values, for some sample {{nowrap|size <math>r</math>,}} and then recursively selecting two elements somewhat above and below position <math>rk/n</math> of the sample to use as pivots. With this choice, it is likely that <math>k</math> is sandwiched between the two pivots, so that after pivoting only a small number of data values between the pivots are left for a recursive call. This method can achieve an expected number of comparisons that is {{nowrap|<math>n+\min(k,n-k)+o(n)</math>.{{r|floriv}}}} In their original work, Floyd and Rivest claimed that the <math>o(n)</math> term could be made as small as <math>O(\sqrt n)</math> by a recursive sampling scheme, but the correctness of their analysis has been {{nowrap|questioned.{{r|brown|prt}}}} Instead, more rigorous analysis has shown that a version of their algorithm achieves <math>O(\sqrt{n\log n})</math> for this {{nowrap|term.{{r|knuth}}}} Although the usual analysis of both quickselect and the Floyd–Rivest algorithm assumes the use of a [[true random number generator]], a version of the Floyd–Rivest algorithm using a [[pseudorandom number generator]] seeded with only logarithmically many true random bits has been proven to run in linear time with high probability.{{r|karrag}}
[[File:Mid-of-mid.png|thumb|upright=1.35|Visualization of pivot selection for the [[median of medians]] method. Each set of five elements is shown as a column of dots in the figure, sorted in increasing order from top to bottom. If their medians (the green and purple dots in the middle row) are sorted in increasing order from left to right, and the median of medians is chosen as the pivot, then the <math>3n/10</math> elements in the upper left quadrant will be less than the pivot, and the <math>3n/10</math> elements in the lower right quadrant will be greater than the pivot, showing that many elements will be eliminated by pivoting.]]
*The [[median of medians]] method partitions the input into sets of five elements, and then uses some other method (rather than a recursive call) to find the median of each of these sets in constant time per set. It then recursively calls the same selection algorithm to find the median of these <math>n/5</math> medians, using the result as its pivot. It can be shown that, for this choice of pivot, {{nowrap|<math>\max(|L|,|R|)\le 7n/10</math>.}} Thus, a problem on <math>n</math> elements is reduced to two recursive problems on <math>n/5</math> and at most <math>7n/10</math> elements. The total size of these two recursive subproblems is at {{nowrap|most <math>9n/10</math>,}} allowing the total time to be analyzed as a geometric series adding {{nowrap|to <math>O(n)</math>.}} Unlike quickselect, this algorithm is deterministic, not {{nowrap|randomized.{{r|clrs|erickson|bfprt}}}} It was the first linear-time deterministic selection algorithm {{nowrap|known,{{r|bfprt}}}} and is commonly taught in undergraduate algorithms classes as an example of a [[Divide-and-conquer algorithm|divide and conquer]] that does not divide into two equal {{nowrap|subproblems.{{r|clrs|erickson|gootam|gurwitz}}}} However, the high constant factors in its <math>O(n)</math> time bound make it slower than quickselect in {{nowrap|practice,{{r|skiena|gootam}}}} and slower even than sorting for inputs of moderate {{nowrap|size.{{r|erickson}}}}
Line 283:
| title = Algorithm 65: Find
| volume = 4}}</ref>
 
<ref name=karrag>{{cite journal
| last1 = Karloff | first1 = Howard J.
| last2 = Raghavan | first2 = Prabhakar | author2-link = Prabhakar Raghavan
| doi = 10.1145/174130.174132
| issue = 3
| journal = [[Journal of the ACM]]
| mr = 1370358
| pages = 454–476
| title = Randomized algorithms and pseudorandom numbers
| volume = 40
| year = 1993}}</ref>
 
<ref name=kletar>{{cite book