Normal number (computing): Difference between revisions

Content deleted Content added
Add largest and smallest values to table, for explicitness, and update to use Maths Equations for visual formatting.
Updated reference links to existing wikipedia pages and Maths Formulas for formatting to match syntax on other pages
Line 8:
The magnitude of the '''smallest normal number''' in a format is given by:
 
<math display="block">b^{E_{\text{eminmin}}}</math>
 
where ''b'' is the base (radix) of the format (like common values 2 or 10, for binary and decimal number systems), and ''emin<math display="inline">E_{\text{min}}</math>'' depends on the size and layout of the format.
 
Similarly, the magnitude of the '''largest normal number''' in a format is given by
 
:<math display="block">b^{E_{\text{emaxmax}}}\cdot\left(b - b^{1-p}\right)</math>
 
where ''p'' is the precision of the format in [[numerical digit|digit]]s and ''emax<math display="inline">E_{\text{min}}</math>'' is (&minus;related to ''emin<math display="inline">E_{\text{max}}</math>'')+1. as:
 
<math display="block">E_{\text{min}}\, \overset{\Delta}{\equiv}\, 1 - E_{\text{max}} = \left(-E_{\text{max}}\right) + 1</math>
In the [[IEEE 754]] binary and decimal formats, ''b'', ''p'', ''emin'', and ''emax'' have the following values:<ref>{{Citation
 
In the [[IEEE 754]] binary and decimal formats, ''b'', ''p'', ''emin''<math display="inline">E_{\text{min}}</math>, and ''emax<math display="inline">E_{\text{max}}</math>'' have the following values:<ref>{{Citation
| title = IEEE Standard for Floating-Point Arithmetic
| date = 2008-08-29
Line 25 ⟶ 27:
| accessdate = 2015-04-26| isbn = 978-0-7381-5752-8
}}</ref>
{| class="wikitable" | style="text-align: right;" |
|+Smallest and Largest Normal Numbers for common numerical Formats
!Format!!<math>b</math>!!<math>p</math>!!<math>E_{\text{min}}</math>!!<math>E_{\text{max}}</math>
!Format!!b!!p!!emin!!emax
!Smallest Normal Number
!Largest Normal Number
|-
|[[Half-precision floating-point format|binary16]]||2||11||−14||15
|<math>2^{-14} \equiv 0.00006103515625</math>
|<math>2^{15}\cdot\left(2 - 2^{1-11}\right) \equiv 65504</math>
|-
|[[Single-precision floating-point format|binary32]]||2||24||−126||127
|<math>2^{-126} \equiv \frac{1}{2^{126}}</math>
|<math>2^{127}\cdot\left(2 - 2^{1-24}\right)</math>
|-
|[[Double-precision floating-point format|binary64]]||2||53||−1022||1023
|<math>2^{-1022} \equiv \frac{1}{2^{1022}}</math>
|<math>2^{1023}\cdot\left(2 - 2^{1-53}\right)</math>
Line 71 ⟶ 73:
== See also ==
* [[Normalized number]]
* [[Half-precision floating-point format]]
* [[Single-precision floating-point format]]
* [[Double-precision floating-point format]]
 
== References ==