Content deleted Content added
Updated reference |
Added citations and reworded |
||
Line 165:
==Glossary of name variants==
{{or section|date=December 2021}}
Let <math>f : X \to Y</math> be a map between two [[vector space]]s over a field <math>\mathbb{F}</math> (usually the [[real number]]s <math>\R</math> or [[complex number]]s <math>\Complex</math>). If <math>S</math> is a set of scalars, such as <math>\Z,</math> <math>[0, \infty),</math> or <math>\
<math display=inline>f(s x) = s f(x)</math> for every <math>x \in X</math> and scalar <math>s \in S.</math>
For instance, every [[additive map]] between vector spaces is {{em|{{visible anchor|homogeneous over the rational numbers}}}} <math>S := \Q</math> although it [[Cauchy's functional equation|might not be {{em|{{visible anchor|homogeneous over the real numbers}}}}]] <math>S := \R.</math>
Line 171:
The following commonly encountered special cases and variations of this definition have their own terminology:
#({{em|{{visible anchor|Strict positive homogeneity|Strictly positive homogeneous|text=Strict}}}}) {{em|{{visible anchor|Positive homogeneity|Positive homogeneous|Positively homogeneous}}}}:{{sfn|Schechter|1996|pp=313-314}} <math>f(rx) = r f(x)</math> for all <math>x \in X</math> and all {{em|positive}} real <math>r > 0.</math>
#*
#* This property is used in the definition of a [[sublinear function]].{{sfn|Schechter|1996|pp=313-314}}{{sfn|Kubrusly|2011|p=200}}
#* [[Minkowski functional]]s are exactly those non-negative extended real-valued functions with this property.
#{{em|{{visible anchor|Real homogeneity|Real homogeneous}}}}: <math>f(rx) = r f(x)</math> for all <math>x \in X</math> and all real <math>r.</math>
|