Content deleted Content added
Moved to Notes section |
Added citation |
||
Line 171:
The following commonly encountered special cases and variations of this definition have their own terminology:
#({{em|{{visible anchor|Strict positive homogeneity|Strictly positive homogeneous|text=Strict}}}}) {{em|{{visible anchor|Positive homogeneity|Positive homogeneous|Positively homogeneous}}}}:{{sfn|Schechter|1996|pp=313-314}} <math>f(rx) = r f(x)</math> for all <math>x \in X</math> and all {{em|positive}} real <math>r > 0.</math>
#* When the function <math>f</math> is valued in a vector space or field, then this property is [[Logical equivalence|logically equivalent]]<ref group=proof name=posHomEquivToNonnegHom /> to {{em|{{visible anchor|Nonnegative homogeneity|Nonnegative homogeneous|Nonnegatively homogeneous|text=nonnegative homogeneity}}}}, which by definition means:{{sfn|Kubrusly|2011|p=200}}
#* This property is used in the definition of a [[sublinear function]].{{sfn|Schechter|1996|pp=313-314}}{{sfn|Kubrusly|2011|p=200}}
#* [[Minkowski functional]]s are exactly those non-negative extended real-valued functions with this property.
Line 178:
#{{em|{{visible anchor|Homogeneity|Homogeneous}}}}:{{sfn|Kubrusly|2011|p=55}} <math>f(sx) = s f(x)</math> for all <math>x \in X</math> and all scalars <math>s \in \mathbb{F}.</math>
#* It is emphasized that this definition depends on the scalar field <math>\mathbb{F}</math> underlying the ___domain <math>X.</math>
#* This property is used in the definition of [[linear functional]]s and [[linear map]]s.{{sfn|Kubrusly|2011|p=200}}
#{{em|[[Semilinear map|{{visible anchor|Conjugate homogeneity|Conjugate homogeneous}}]]}}: <math>f(sx) = \overline{s} f(x)</math> for all <math>x \in X</math> and all scalars <math>s \in \mathbb{F}.</math>
#* If <math>\mathbb{F} = \Complex</math> then <math>\overline{s}</math> typically denotes the [[complex conjugate]] of <math>s</math>. But more generally, as with [[semilinear map]]s for example, <math>\overline{s}</math> could be the image of <math>s</math> under some distinguished automorphism of <math>\mathbb{F}.</math>
|