Explicit formulae for L-functions: Difference between revisions

Content deleted Content added
Line 68:
{{unreferenced section|date=September 2020}}
 
The Riemann-WeylWeil formula{{clarify|reason=A formula by this name is not mentioned in the article.|date=September 2020}} can be generalized to arithmetical functions other than the von Mangoldt function. For example for the Möbius function we have
 
: <math> \sum_{n=1}^{\infty} \frac{\mu(n)}{\sqrt{n}}g(\log n)=\sum_{\rho}\frac{h( \gamma)}{\zeta '( \rho )} + \sum_{n=1}^{\infty} \frac{1}{\zeta ' (-2n)} \int_{-\infty}^{\infty}dxg(x)e^{-(2n+1/2)x} .</math>