Content deleted Content added
Citation bot (talk | contribs) Alter: template type. Add: url, isbn, pages, year, title, chapter, s2cid, pmc, authors 1-2. | Use this bot. Report bugs. | Suggested by Chris Capoccia | #UCB_toolbar |
m Dating maintenance tags: {{Pn}} |
||
Line 1:
'''Fixed-point computation''' refers to the process of computing an exact or approximate [[Fixed point (mathematics)|fixed point]] of a given function.<ref name=":1">{{cite book |doi=10.1007/978-3-642-50327-6 |title=The Computation of Fixed Points and Applications |series=Lecture Notes in Economics and Mathematical Systems |year=1976 |volume=124 |isbn=978-3-540-07685-8 }}{{pn|date=April 2023}}</ref> In its most common form, we are given a function ''f'' that satisfies the condition to the [[Brouwer fixed-point theorem]], that is: ''f'' is continuous and maps the unit [[N-cube|''d''-cube]] to itself. The [[Brouwer fixed-point theorem]] guarantees that ''f'' has a fixed point, but the proof is not constructive. Various algorithms have been devised for computing an approximate fixed point. Such algorithms are used in economics for computing a [[market equilibrium]], in game theory for computing a [[Nash equilibrium]], and in [[dynamic system]] analysis.
== Definitions ==
Line 18:
A Lipschitz-continuous function with constant ''L'' is called [[Contractive|'''contractive''']] if ''L''<1; it is called [[Weakly-contractive|'''weakly-contractive''']] if ''L≤''1.Every contractive function satisfying Brouwer's condisions has a ''unique'' fixed point. Moreover, fixed-point computation for contractive functions is easier than for general functions.
The first algorithm for fixed-point computation was the [[fixed-point iteration]] algorithm of Banach. [[Banach fixed point theorem|Banach's fixed-point theorem]] implies that, when fixed-point iteration is applied to a contraction mapping, the error after ''t'' iterations is in <math>O(L^t)</math>. Therefore, the number of evaluations required for a ''δ''-relative fixed-point is approximately <math>\log_L(\delta) = \log(\delta)/\log(L) = \log(1/\delta)/\log(1/L) </math>. Sikorski and Wozniakowski<ref name=":5">{{cite journal |last1=Sikorski |first1=K |last2=Woźniakowski |first2=H |title=Complexity of fixed points, I |journal=Journal of Complexity |date=December 1987 |volume=3 |issue=4 |pages=388–405 |doi=10.1016/0885-064X(87)90008-2 }}</ref> showed that Banach's algorithm is optimal when the dimension is large. Specifically, when <math>d\geq \log(1/\delta)/\log(1/L) </math>, the number of required evaluations of ''any'' algorithm for ''δ''-relative fixed-point is larger than 50% the number of evaluations required by the iteration algorithm. Note that when ''L'' approaches 1, the number of evaluations approaches infinity. In fact, no finite algorithm can compute a ''δ''-absolute fixed point for all functions with L=1.<ref name=":4">{{cite book |last1=Sikorski |first1=Krzysztof A. |title=Optimal Solution of Nonlinear Equations |date=2001 |publisher=Oxford University Press |isbn=978-0-19-510690-9 }}{{pn|date=April 2023}}</ref>
When L<1 and ''d''=1, the optimal algorithm is the Fixed Point Envelope (FPE) algorithm of Sikorski and Wozniakowski.<ref name=":5" /> It finds a ''δ''-relative fixed point using <math>O(\log(1/\delta) + \log \log(1/(1-L))) </math> queries, and a ''δ''-absolute fixed point using <math>O(\log(1/\delta)) </math> queries. This is much faster than the fixed-point iteration algorithm.<ref>{{cite book |doi=10.1007/978-1-4615-9552-6_4 |chapter=Fast Algorithms for the Computation of Fixed Points |title=Robustness in Identification and Control |year=1989 |last1=Sikorski |first1=K. |pages=49–58 |isbn=978-1-4615-9554-0 }}</ref>
|