Content deleted Content added
more detailed explanation of Charnes-Cooper |
m math formatting fix |
||
Line 26:
& t \geq 0.
\end{align}
</math>
</math>A solution <math>\mathbf{x}</math> to the original linear-fractional program can be translated to a solution of the transformed program via the equalities▼
▲
:<math>\mathbf{y} = \frac{1}{\mathbf{d}^T \mathbf{x} + \beta} \cdot \mathbf{x}\quad \text{and} \quad t = \frac{1}{\mathbf{d}^T \mathbf{x} + \beta}.</math>
Conversely, a solution for <math>\mathbf{y}</math> and <math>t </math> of the transformed linear program can be translated to a solution of the original
:<math>\mathbf{x}=\frac{1}{t}\mathbf{y}.</math>
|