Functional integration: Difference between revisions

Content deleted Content added
No edit summary
Line 26:
Whereas standard [[Riemann integral|Riemann integration]] sums a function ''f''(''x'') over a continuous range of values of ''x'', functional integration sums a [[functional (mathematics)|functional]] ''G''[''f''], which can be thought of as a "function of a function" over a continuous range (or space) of functions ''f''. Most functional integrals cannot be evaluated exactly but must be evaluated using [[perturbation methods]]. The formal definition of a functional integral is
<math display="block">
\int G[f]\; \mathcal{D}[Dff] \equiv \int_{-\infty}^\infty \cdots \int_{-\infty}^\infty G[f] \prod_x df(x).
</math>
 
However, in most cases the functions ''f''(''x'') can be written in terms of an infinite series of [[orthogonal functions]] such as <math>f(x) = f_n H_n(x)</math>, and then the definition becomes
<math display="block">
\int G[f] \; \mathcal{D}[Dff] \equiv \int_{-\infty}^\infty \cdots \int_{-\infty}^\infty G(f_1, f_2, \ldots) \prod_n df_n,
 
</math>
 
Line 40 ⟶ 41:
 
:<math>
\frac{\displaystyle\int e^{\exp\left\lbrace-\frac{i1}{2} \int f(x) \cdot K(x,y) \cdot f(y) \,dx\,dy + \int J(x) \cdot f(x) \,dx}\right\rbrace \mathcal{D}[Dff]}
{\displaystyle\int e^{\exp\left\lbrace-\frac{i1}{2} \int f(x) \cdot K(x,y) \cdot f(y) \,dx\,dy}\right\rbrace \mathcal{D}[Dff]} =
e^{-\exp\left\lbrace\frac{i1}{2}\int J(x) \cdot K^{-1}(x,y) \cdot J(y) \,dx\,dy}\right\rbrace.
</math>
 
By functionally differentiating this with respect to ''J''(''x'') and then setting to 0 this becomes an exponential multiplied by a polynomial in ''f''. For example, setting <math>K(x, y) = \Box\delta^4(x - y)</math>, we find:
 
:<math>
\fracdfrac{\displaystyle\int f(a) f(b) e^{i \int f(x) \Box f(x) \,dxd^44x} \mathcal{D}[Dff]}
{\displaystyle\int e^{i \int f(x) \Box f(x) \,dxd^44x} \mathcal{D}[Dff]} =
K^{-1}(a, b) = \frac{1}{|a - b|^2},
</math>
Line 56 ⟶ 57:
 
:<math>
\int e^{i\exp\left\lbrace \int f(x) g(x)dx\right\rbrace \,dxmathcal{D} [Dff] = \delta[g] = \prod_x\delta\big(g(x)\big),
</math>