Content deleted Content added
Submitting using AfC-submit-wizard |
Declining submission: Please discuss at the talk page for Gamma function whether this should be a section on that page or split off. (AFCH 0.9.1) |
||
Line 1:
{{AFC submission|d|reason|Please discuss at the talk page for [[Gamma function]] whether this should be a section on that page or split off.|u=Onlineuser577215|ns=118|decliner=AngusWOOF|declinets=20230427192227|ts=20230427182236}} <!-- Do not remove this line! -->
{{Short description|Inverse of the gamma function}}▼
{{AFC submission|d|v|u=Onlineuser577215|ns=118|decliner=Majash2020|declinets=20230412023636|small=yes|ts=20221206210833}} <!-- Do not remove this line! -->▼
{{Draft topics|mathematics}}▼
{{AfC topic|stem}}▼
▲{{AFC submission|d|v|u=Onlineuser577215|ns=118|decliner=Majash2020|declinets=20230412023636|ts=20221206210833}} <!-- Do not remove this line! -->
{{AFC comment|1=Please fix the references to this. The article is definitely notable, mostly the references need to be fixed [[User:Majash2020|Majash2020]] ([[User talk:Majash2020|talk]]) 02:36, 12 April 2023 (UTC)}}
Line 11 ⟶ 8:
----
▲{{Short description|Inverse of the gamma function}}
▲{{Draft topics|mathematics}}
▲{{AfC topic|stem}}
In [[mathematics]], the inverse gamma function <math>\Gamma^{-1}(x)</math> is the [[inverse function]] of the [[gamma function]]. In other words, it is the function satisfying <math display="inline">\Gamma(y)=x</math>. For example, <math>\Gamma^{-1}(24)=5</math> <ref>{{Cite journal |last=Borwein, Corless |title=Gamma and Factorial in the Monthly |journal=|year=2017 |arxiv=1703.05349 }}</ref>. Usually, the inverse gamma function refers to the principal branch on the interval <math>\left(\Gamma(\alpha)= 0.8856031..., \infty\right)</math> where <math>\alpha=1.4616321...</math> is the unique positive number such that the [[digamma function]] <math>\Psi(\alpha)=0</math> <ref>{{cite journal |last1=Uchiyama |first1=MITSURU |title=The principal inverse of the gamma function |date=April 2012 |url= https://www.jstor.org/stable/41505586 |journal=Proceedings of the American Mathematical Society|volume=140 |issue=4 |pages=1347 |doi= 10.1090/S0002-9939-2011-11023-2
Line 17 ⟶ 16:
==== Definition ====
The inverse gamma function may be defined by the following integral representation
Where <math>\int_{-\infty}^{\Gamma\left(\alpha\right)}\left(\frac{1}{t^{2}+1}\right)d\mu(t)<\infty</math>, and a and b are real numbers with <math>b\geqq0</math>, and <math>\mu (t)</math> is the [[Borel measure|Borel Meausure]].
Line 24 ⟶ 23:
To compute the branches of the inverse gamma function one can first compute the Taylor series of <math>\Gamma(x)</math> near <math>\alpha</math>. The series can then be truncated and inverted, which yields successively better approximations to <math>\Gamma^{-1}(x)</math>. For instance, we have the quadratic approximation<ref>{{cite journal |last1=Corless |last2=Folitse |last3=Jeffrey |title=Properties and Computation of the Functional Inverse of Gamma |journal=SYNASC |date=2017 |pages=65 |doi=10.1109/SYNASC.2017.00020}}</ref>
<math>
\Gamma^{-1}\left(x\right)\approx\alpha+\sqrt{\frac{2\left(x-\Gamma\left(\alpha\right)\right)}{\Psi\left(1,\ \alpha\right)\Gamma\left(\alpha\right)}}.</math>
|