Content deleted Content added
mNo edit summary |
mNo edit summary Tags: Visual edit Mobile edit Mobile web edit |
||
Line 33:
Where <math>W_0(x)</math> is the [[Lambert W function]]. The formula is found by inverting the [[Stirling's approximation|Stirling approximation]], and so can also be expanded into an asymptotic series.
'''Series Expansion'''
To obtain a series expansion of the inverse gamma function one can first compute the series expansion of the [[reciprocal gamma function]] <math>\frac{1}{\Gamma(x)}</math> near the poles at the negative integers, and then invert the series.
Setting <math>z=\frac{1}{x}</math> then yields, for the nth branch of the inverse gamma function (<math>n\ge 0</math>) <ref>{{Cite web |last=Couto |first=Ana Carolina Camargos |last2=Jeffrey |first2=David |last3=Corless |first3=Robert |date=November 2020 |title=The Inverse Gamma Function and its Numerical Evaluation |url=https://www.maplesoft.com/mapleconference/2020/highlights.aspx |url-status=live |place=Section 8 |publication-place=Maple Conference Proceedings}}</ref>:
<math>\Gamma^{-1}(z)=-n+\frac{\left(-1\right)^{n}}{n!z}+\frac{\psi^{(0)}\left(n+1\right)}{\left(n!z\right)^2}+\frac{\left(-1\right)^{n}\left(\pi^{2}+9\psi^{(0)}\left(n+1\right)^{2}-3\psi^{(1)}\left(n+1\right)\right)}{6\left(n!z\right)^3}+O\left(x^{4}\right)</math>
Where <math>\psi^{(n)}(x)</math> is the [[polygamma function]].
== References ==
|