Content deleted Content added
Tags: Mobile edit Mobile web edit |
mNo edit summary |
||
Line 3:
{{AfC topic|stem}}
{{AfC submission|||ts=20230503070148|u=Onlineuser577215|ns=118}}
<!-- Do not remove this line! -->
{{AFC comment|1=Users on the Gamma function page suggested that this should have its own page instead of being added as a new section on that page. See the talk page on [[Gamma function]] Also, the existing references have been improved and new ones have been added. [[User:Onlineuser577215|Onlineuser577215]] ([[User talk:Onlineuser577215|talk]]) 8:58, 3 May 2023 (UTC)}}
----
{{Distinguish|Inverse-gamma distribution|Reciprocal gamma function}}
In [[mathematics]], the inverse gamma function <math>\Gamma^{-1}(x)</math> is the [[inverse function]] of the [[gamma function]]. In other words, it is the function satisfying <math display="inline">\Gamma(y)=x</math>. For example, <math>\Gamma^{-1}(24)=5</math> <ref>{{Cite journal |last=Borwein
|jstor=41505586 |s2cid=85549521 |access-date=20 March 2023}}</ref> (where <math>\Psi(x)</math> is the [[digamma function]]).
Line 18:
==== Definition ====
The inverse gamma function may be defined by the following integral representation <ref>{{cite journal |last1=
<math>\Gamma^{-1}(x)=a+bx+\int_{-\infty}^{\Gamma(\alpha)}\left(\frac{1}{x-t}-\frac{t}{t^{2}-1}\right)d\mu(t) </math> Where <math>\int_{-\infty}^{\Gamma\left(\alpha\right)}\left(\frac{1}{t^{2}+1}\right)d\mu(t)<\infty</math>, and a and b are real numbers with <math>b\geqq0</math>, and <math>\mu (t)</math> is the [[Borel measure|Borel Meausure]].
Line 28 ⟶ 29:
\Gamma^{-1}\left(x\right)\approx\alpha+\sqrt{\frac{2\left(x-\Gamma\left(\alpha\right)\right)}{\Psi\left(1,\ \alpha\right)\Gamma\left(\alpha\right)}}.</math>
The inverse gamma function also has the following [[asymptotic formula]] <ref>{{
<math>\Gamma^{-1}(x)\sim\frac{1}{2}+\frac{\ln\left(\frac{x}{\sqrt{2\pi}}\right)}{W_{0}\left(e^{-1}\ln\left(\frac{x}{\sqrt{2\pi}}\right)\right)}</math>
Line 39 ⟶ 40:
To obtain a series expansion of the inverse gamma function one can first compute the series expansion of the [[reciprocal gamma function]] <math>\frac{1}{\Gamma(x)}</math> near the poles at the negative integers, and then invert the series.
Setting <math>z=\frac{1}{x}</math> then yields, for the
<math>\
Where <math>\psi^{(n)}(x)</math> is the [[polygamma function]].
|