Content deleted Content added
MainakC24365 (talk | contribs) added citations and external links |
Fixed reference date error(s) (see CS1 errors: dates for details) and AWB general fixes |
||
Line 1:
In [[mathematics]], the '''[[Closed-form expression|explicit formulae]] for [[L-function
==Riemann's explicit formula==
Line 7:
:<math>f(x) = \pi_0(x) + \frac{1}{2}\,\pi_0(x^{1/2}) + \frac{1}{3}\,\pi_0(x^{1/3}) + \cdots</math>
in which a prime power {{math|''p''<sup>''n''</sup>}} counts as {{frac|1|{{mvar|n}}}} of a prime. The normalized [[prime-counting function]] can be recovered from this function by
:<ref>{{Cite journal |last=Li |first=Xian-Jin |date=April 2004
where {{math|''μ''(''n'')}} is the [[Möbius function]]. Riemann's formula is then
:<math>f(x) = \operatorname{li}(x) - \sum_\rho \operatorname{li}(x^\rho) - \log(2) + \int_x^\infty \frac{dt}{~t\,(t^2-1)~\log(t)~}</math>
Line 28:
==Weil's explicit formula ==
There are several slightly different ways to state the explicit formula.<ref>{{Cite web |title=the Riemann-Weil explicit formula |url=https://empslocal.ex.ac.uk/people/staff/mrwatkin/zeta/weilexplicitformula.htm |access-date=2023-06-14 |website=empslocal.ex.ac.uk}}</ref>
:<math>
|